
Normal basis exhaustive search: 10 years later

L. Moura1, D. Panario2, and D. Thomson2

1 University of Ottawa lucia@site.uottawa.ca
2 Carleton University {daniel,dthomson}@math.carleton.ca

Abstract. This paper concerns an exhaustive search for low complexity normal bases over finite
fields F2n over F2 for n ≤ 46. This is a followup paper to [11], which appeared one decade ago
in 2008 and completed the cases n ≤ 39. We extend the results in [11] by taking advantage of a
combination of algorithmic improvements, more efficient implementations and massive parallelism.

Keywords: finite fields, normal bases, NTL, parallel computing

1 Introduction

For any finite field extension F2n over F2, upon choice of a basis, we can write any field element
as an n-long binary vector; that is, F2n

∼= Fn2 , and the basis makes the isomorphism explicit.
When performing finite field arithmetic the choice of representation of elements is critical to
the performance of various operations in the system.

For tiny fields, look-up tables can be employed for field arithmetic and for mid-sized fields
Zech logarithms as a time-memory tradeoff on full lookup tables can be used, see [13, Section
2.1.7.5] for more details. For larger finite fields where lookup tables are no longer feasible, we
exploit an explicit isomorphism between the field F2n and the vector space Fn2 by choice of a
given basis. Most commonly, field extensions are given by polynomial or power bases; namely,
F2n
∼= F2[x]/(f), where f ∈ F2[x] is an irreducible polynomial of degree n. Here, arithmetic is

performed (mod f), and is reasonably efficient in many cases, especially when a sparse choice
of f is used. This paper deals with a different kind of basis, namely, normal bases.

Definition 1. Let B = {α, α2, . . . , α2n−1}. If B is a basis of F2n over F2 (i.e., if its elements
are linearly independent), then B is a normal basis of F2n over F2 and every β ∈ B is a normal
element of F2n over F2.

For any α ∈ F2n , the elements α2i , 0 ≤ i ≤ n− 1, are the (Galois) conjugates of α.

We highlight the usefulness of a normal basis representation of F2n over F2. Suppose γ =∑n−1
i=0 giα

2i , then γ2
j

=
∑n−1

i=0 g(i−j) mod nα
2i for any integer j. Hence, squaring in normal basis

representation is given by a cyclic bit shift of its underlying coefficient vector.

The multiplication of elements represented in normal basis receives a similar simplification.
Denote by tijk the structure constants of B, given by the relations

α2iα2j =
n−1∑
k=0

tijkα
2k .

Since α2iα2j = (αα2j−i)2
i
, we have tijk = t0(j−i)(k−i) for all i, j, k, where subscripts are taken

modulo n. The complexity of multiplication of generic elements in F2n depends directly on the
number of non-zero structure constants. By the above, therefore, the cost of multiplication is
directly related to the number of nonzero t0jk.

Definition 2. Let B = {α, α2, . . . , α2n−1} be a normal basis of F2n over F2 and let constants
tij be given by the relations

αα2i =

n−1∑
j=0

tijα
2j 0 ≤ i ≤ n− 1.

The complexity (or density) of B is given by CB = |{tij 6= 0: 0 ≤ i, j ≤ n − 1}|. The matrix
TB = (tij) is the multiplication table of B.

By low complexity normal bases, we mean normal bases whose complexity is bounded by kn
for a small integer constant k. Low complexity normal bases are desirable for efficient computa-
tions, particularly when the application requires a large number of squarings or exponentiations.
For example, the National Institute for Standards in Technology prescribes low complexity nor-
mal bases for use in elliptic curve cryptography for curves over F2n [14], and they are also
prescribed for use in decoding of Gabidulin codes in the rank metric [17]. The following propo-
sition provides an achievable lower-bound on the complexity of normal bases.

Proposition 1. [12] Let B be a normal basis, then 2n− 1 ≤ CB ≤ n2 − n.

Bases which meet the lower bound from Proposition 1 are optimal normal bases, and were
characterized completely in [4]. Optimal normal bases exist only when n+1 or 2n+1 are prime,
and generalizations given by Gauss periods provide low complexity normal bases only when
kn + 1 is prime for some k; see [13, Section 5.3]. Few other constructions of normal bases are
known, nearly all of which construct normal bases in F2n from existing normal bases in either
subfields or extensions. Hence, low-complexity normal bases are even required in these cases
as a starting point. Heuristically, the complexity of a random normal basis is on the order of
n2/2, is tightly compacted about the mean, and up to half of all elements of F2n are normal, so
random search is unlikely to yield low complexity normal bases; see [11].

Exhaustive searches for normal bases of F2n over F2 have been performed previously, for
n < 30 in [12], for n < 33 in [8], and for n < 40 by the authors (with A. Masuda) in [11].
Restricting to a subset of normal bases, namely self-dual normal bases, allows for efficient
search by the transitive action of orthogonal circulant matrices; this was completed for n ≤ 47
in [8] and those results were verified and extended to odd characteristics in [1].

The purpose of this paper is to extend the results in [11] using a combination of algorithmic
improvements, efficient implementations and increased availability of computational resources.
In [11] we found the minimum complexity normal bases in F2n for all n = 2, . . . , 39 using an
implementation of Algorithm 1; see Section 3 for details. In this paper, we give an updated
algorithm, Algorithm 2, see Section 4, and give a more efficient implementation, see Section 5.
Using these improvements, we extend our search to include the cases n = 40, . . . , 46. We give
these results and some candidates for future work in Section 6.

2 Some necessary background and notation

In this paper, we use field elements α ∈ F2n interchangeably with their expansion as n-long
binary vectors in some implicit underlying basis. When we write matrices as a single row of
elements in F2n we mean their implicit expansion in the underlying F2-basis; for example,

Pα =
(
α α2 · · · α2n−1

)
should be interpreted as an n × n matrix with entries in F2 where the

ith column is the expansion of α2i , 0 ≤ i < n, in the implicit underlying basis.

2

Operation Denoted Cost

Addition in F2n A(n) n
Multiplication (classical) M(n) 4n2 − 5n+ 1
Matrix multiplication (classical) C = AB, C,A,B ∈ Fn×n2 M(n) 2n3 − n2

Matrix inversion (Gaussian reduction) in Fn×n2 I(n)
2

3
(n3 + 3n2 − 4n)

gcd(f, xn − 1), f ∈ F2n [x] (fast methods) G(n) ≥ nM(n) logn

Table 1. Upper bound on the cost of arithmetic operations in F2n , given in bit operations [6].

Throughout this paper, we denote by ei the ith standard basis vector for 0 ≤ i ≤ n−1; that
is ei = (eij) with

eij =

{
1 j = i,

0 otherwise.

2.1 Complexity of field arithmetic

In Table 1, we give the computational complexity of the F2n arithmetic operations we use in
this paper, given in number of F2 operations.

The quantity M(n) gives the number of F2-operations for computing the multiplication of
two elements of F2n over F2. Classically, this is done by polynomial convolution plus the division
by an irreducible modulus of degree n with remainder. The NTL documentation states that F2n

arithmetic is performed “using a combination of classical routines and Karatsuba.” From our
understanding of the NTL internals, for n < 64, multiplication is performed by special 128-
bit register arithmetic, when available, otherwise classically in an unrolled loop. For moderate
sized n < 512, explicit unrolled Karatsuba multiplication is performed. Since this is outside of
our range of interest, we do not go into the details of Karatsuba multiplication costing here.
Asymptotically faster methods are also available, but these are far outside of our range of
interest. After multiplication, division plus remainder is performed using special functions for a
trinomial or pentanomial modulus, as applicable. We use the NTL default modulus for all n.

The NTL implementation of matrix inversion uses Gaussian reduction, so we give this cost
with the observation that over F2 there is no row scaling required. Though asymptotically faster
methods exist here too, the discussion in the preamble to [6, Chapter 12] indicates that these
methods have crossover points also outside of our range of interest.

The cost G(n) of a polynomial gcd in F2n [x] is only used as a lower bound to show that
the computational complexity of our improved algorithm, Algorithm 2, is less than the original
Algorithm 1. For this reason, we state the cost of G(n) using fast arithmetic, regardless of
crossover point, since this is enough and the use of classical arithmetic would only increase the
savings of Algorithm 2.

3 Original algorithm from [11]

In this section we present Algorithm 1 and explain its various components. Algorithm 1 first
appeared in [11], and is the main reference from which this work is based on. In Section 4 we
analyze Algorithm 2, our updated algorithm from this work. We have a new implementation of
Algorithm 2, so we leave a discussion of specific implementation details to Section 5.2.

3.1 Efficient iteration through F2n

This section is devoted to justifying how explaining how lines 7 and 8 of Algorithm 1 admit
efficient iteration through putative normal bases in F2n .

3

Algorithm 1 Exhaustive search algorithm from [11]
1: Input: n ∈ Z>0

2: Returns: α ∈ F2n , a normal element with minimum complexity
3:
4: min complexity←∞; min element← 0;α← 0;B = {0, . . . , 0}
5: Precompute {e2

j

i }, 0 ≤ i, j ≤ n− 1
6: for idx← 0 to 2n − 1 do
7: γ ← Γ (idx) . See Section 3.1

8: B ← {α+ eγ , α
2 + e2γ , . . . , α

2n−1

+ e2
n−1

γ }
9: if α 6= min<(B) then . See Section 3.2

10: continue
11: if gcd(

∑n−1
i=0 α

2ixn−1−i, xn − 1) 6= 1 then . See Theorem 1
12: continue
13: cplex← CB . See Algorithm 3
14: if cplex < min complexity then
15: min complexity← cplex; min element← α

16: return min complexity,min element

For any element α ∈ F2n , calculating B = {α, α2, . . . , α2n−1} generically requires n − 1
multiplications in F2n using repeated squaring. Suppose B is known, and consider computing
the putative basis B′ = {α+ β, . . . , α2n−1

+ β2
n−1}. We show how to efficiently iterate through

all of F2n after the precomputation of a small set of elements in F2n .

Definition 3. A Gray code is an ordering {g0, g1, . . . , g2n−1} of Fn2 such that H(gi, gi+1) = 1
for i = 0, 1, . . . , 2n − 2, where H(a, b) is the Hamming distance of a, b ∈ Fn2 .

We use a Gray code for efficient iteration through Fn2 as follows. Any element α ∈ F2n is
isomorphic to its binary vector of coefficients in a fixed basis; say α ∼= gi for some gi in a Gray
code. The successor of α is the element β ∼= gi+1. For ease of notation we identify α, β ∈ F2n

with their coefficient vectors. In a Gray code, β = α + eγ for some standard basis vector eγ ,

0 ≤ γ ≤ n−1. Then β2
j

= α2j +e2
j

γ , by the linearity of Frobenius. Hence, with a precomputation

of the vectors e2
j

i for 0 ≤ i, j ≤ n− 1, any β2
j

can be computed by a binary vector addition.

Given a Gray code {g0, . . . , g2n−1} define Γ : [0, 2n − 1]→ [0, n− 1], where Γ (i) = γ when-
ever gi+1 = gi + eγ . The function Γ is used to compute a Gray code successor in line 7-8 in
Algorithm 1; a specific instantiation of Γ is given in Proposition 5.

3.2 Reducing search space using a canonical element check

In this section, we present Proposition 2 to justify line 9, which reduces the size of the search
space in Algorithm 1 by a factor of n.

Proposition 2. Let Bα = {α, αq, . . . , αqn−1} be a putative normal basis. For any β ∈ Bα, as
an unordered multiset Bβ = {β, βq, . . . , βqn−1} = Bα and hence Bβ is a basis if and only if Bα
is. If both Bα and Bβ are bases, then CBβ = CBα.

By Proposition 2, we need to check normality and compute complexity for only a canonical
basis representative among its conjugates. The elements of F2n (and hence, the elements of Bα)
can be represented as n-long binary vectors under some implicit basis, so for any α, β ∈ F2n we
define the ordering ≤ by α < β if α has lexicographically smaller binary vector representation
than β. Equality is well-defined under this ordering: α and β have equal order if and only if
α = β. Equality occurs in a putative basis B if and only if β = α2i for some i, 1 ≤ i ≤ n − 1,

4

proving that B is not a basis. We denote by min<(B) the unique minimal element of B under
≤, if it exists.

For implementation notes on computing lexicographically small elements, see Section 5.2.

3.3 Checking normality

Line 11 of Algorithm 1 is used to filter non-normal elements of F2n , based on Theorem 1.

Theorem 1. [13, Theorem 5.2.11] Let α ∈ F2n and let gα(x) = αxn−1+α2xn−2+ · · ·+α2n−2
x+

α2n−1
. Then α is normal over F2 if and only if gcd(gα, x

n − 1) = 1.

We combine all the ingredients in this section to justify the correctness of Algorithm 1.

Theorem 2. Algorithm 1 is correct and computes the complexity of every normal basis of F2n

over F2.

Proof. Let B = {α, α2, . . . , α2n−1} ⊂ F2n be a normal basis of F2n over F2. If B is a basis, then
B has a unique minimal element under ≤, so without loss of generality suppose α = min<(B).

By Proposition 5, α will be met for some index idx; hence, B will be computed in line 8
at index idx. By supposition, α passes line 9. Finally, gcd(

∑n−1
i=0 α

2ixn−1−i, xn − 1) = 1 by
Theorem 1, hence the complexity of B is computed in line 13. �

4 An improved algorithm for exhaustive search for normal bases

In this section, we present a number of algorithmic improvements to the basic algorithm (Al-
gorithm 1) from [11]. Our improved algorithm is given in Algorithm 2. We maintain efficient
iteration through F2n as in Algorithm 1 and provide an additional cut down of the search space
(see Section 4.1). In Section 4.2, we show how to improve the run-time by deferring the normality
check due to Theorem 1.

Algorithm 2 Updated exhaustive search for low complexity normal bases
1: Input: n ∈ Z>0

2: Returns: α ∈ F2n , a normal element with minimum complexity
3:
4: min complexity←∞; min element← 0;α← 0;B = {0, . . . , 0}; trace← 0

5: Precompute {e2
j

i }, 0 ≤ i, j ≤ n− 1 and Tr(ei), 0 ≤ i ≤ n− 1
6: for idx← 0 to 2n − 1 do
7: γ ← Γ (idx) . See Section 3.1

8: B ← {α+ eγ , α
2 + e2γ , . . . , α

2n−1

+ e2
n−1

γ }
9: trace← trace⊕ Tr(eγ)

10: if trace = 0 then
11: continue
12: if α 6= min<(B) then . See Section 3.2
13: continue
14: cplex← CB . See Algorithm 3
15: if cplex < min complexity then
16: min complexity← cplex; min element← α

17: return min complexity,min element

5

4.1 Trace precomputation

We use another pre-computation and cut-down due to the following observation, based on the
fact that B is a normal basis if and only if its elements are linearly independent.

Definition 4. Let F2n be the degree n extension of F2. Denote the trace of an element α ∈ F2n

by Tr(α) =
∑n−1

i=0 α
2i.

Recall from Theorem 1 that an element α is normal if and only if gα(x) =
∑n−1

i=0 α
2ixn−i

is coprime with xn − 1. Since 1 is a root of xn − 1 for all n, if 1 is a root of gα, then α is not
normal. We summarize the contrapositive in the next proposition.

Proposition 3. If α is normal, then Tr(α) 6= 0.

The trace is an additive map F2n → F2, and by linearity it is easy to see that Tr(α2) =
Tr(α). Thus, the value of Tr(α) is invariant across the set α2j . Hence, with an additional
precomputation of Tr(ei) for 0 ≤ i < n, when computing the successor α′ ← α+ ej for some j,
we also compute Tr(α′) = Tr(α) + Tr(ej), with Tr(α) and Tr(ej) known. If Tr(α+ ej) = 0, then
α′ is not normal and we continue the outer loop. This can be seen in lines 9-11 of Algorithm 2.

Proposition 4 shows that with this small trace precomputation, requiring only a storage of
n bits, we receive an immediate cut-down in the search space by a factor of 2.

Proposition 4. [10, Theorem 2.25] Let α ∈ F2n. We have Tr(α) = 0 if and only if β2 + β = α
for some β ∈ F2n. Hence, exactly 2n−1 elements of F2n have trace 0.

4.2 Removing explicit normality checking

A key difference between Algorithms 1 and 2 is the removal of line 11 from Algorithm 1, which
ensures that only bases pass to the complexity calculation step given by Algorithm 3. In this
section we show that, with a small change to Algorithm 3, the removal of this line clears a
performance bottleneck from Algorithm 1.

We highlight the simple but important observation that Pα =
(
α α2 · · · α2n−1

)
has full rank

if and only if B = {α, α2, . . . , α2n−1} is a normal basis of F2n over F2.

Algorithm 3 is used to calculate the complexity from a putative normal element. The matrix
P−1α is a “change of basis” matrix from the implicit underlying basis to B. If B is not invertible
(hence if the element α is not normal), then Pα is non-invertible. If P−1α is computed by Gaussian
reduction, as soon as a non-pivot row is discovered, an inversion routine can return 0 = det(Pα).
Hence, checking normality and inversion can be performed simultaneously.

It is not obvious that deferring normality checking to the Gaussian reduction step is a net
benefit. The remainder of this section is devoted to showing that this removal indeed is a benefit.

Theorem 3. [5] The proportion ψ(n) of normal bases of F2n over F2 satisfies

ψ(n) =
Φ(xn − 1)

n2n
≥ 1

ne0.83(1 + log2(n))
,

where Φ is Euler’s phi function for polynomials over F2.

Since trace-0 elements are not normal, exactly 2nψ(n) trace-1 elements of F2n are normal.

Let G(n) be the cost of a gcd in F2n , M(n) be the cost of a field multiplication in F2n and
I(n) be the cost of an n × n matrix inversion over F2. The cost of first checking normality

6

on 2n−1/n elements and then calculating complexity on a lower-bound of the remaining 2ψ(n)
elements is

2n−1

n
(G(n) + 2ψ(n) ((n− 1)M(n) + I(n))) . (1)

On the other hand, using Gaussian reduction as a normality check takes time

2n−1

n
((n− 1)M(n) + I(n)) . (2)

Clearly, if G(n) > (1 − 2ψ(n))((n − 1)M(n) + I(n)), then Expression (1) is more expensive
than Expression (2). By Table 1, G(n) > nM(n) log(n) for n > 2, so it is easy to verify that
Expression (1) always dominates.

4.3 Computational complexity of Algorithm 2

Algorithm 2 largely resembles Algorithm 1, with the removal of the gcd-based normality check
and the addition of a trace precomputation.

We focus on the main loop of Algorithm 2 and follow the notation from Table 1. Lines 7-11
are called 2n times: lines 7 and 9 are constant time operations, so we ignore them, and line 8 has
cost nA(n). Indeed, the calculation of the Gray code index in line 7 is constant in an amortized
sense, since

∑n
i=1 i/2

i ≤ 2. Exactly 2n−1 elements pass to line 12 with cost L(n), where L(n)
is the cost of checking canonicity (e.g., lex-first) on input of length n. Exactly 2n−1/n elements
enter Algorithm 3 in line 14. Line 7 of Algorithm 3 has cost I(n) for each input; see Table 1.
Exactly Φ(xn − 1)/n elements pass beyond line 7 of Algorithm 3. The cost of the remaining
lines is (n− 1)M(n) + M(n).

Theorem 4. The cost C(n) of the main loop of Algorithm 2, ignoring lower order terms,
satisfies

47

6
n2 >

C(n)

2n
>

11

6
n2 + 2.616

n2

log2(n)
.

Proof. Let C(n) be the cost of lines 6-16 of Algorithm 2 for 2 < n < 63. Then we have

C(n) = 2nnA(n) + 2n−1L(n) +
2n−1

n
I(n) +

Φ(xn − 1)

n
((n− 1)M(n) + M(n)) .

A lex-first calculation can be implemented in n2 bit comparisons, so we use L(n) = n2. We
recall the costs from Table 1 using schoolbook methods: A(n) = n, M(n) = 4n2 − 5n + 1

I(n) = (2/3)(n3 + 3n2 − 4n) and M(n) = 2n3 − n2. By Theorem 3, Φ(xn−1)
n ≥ 2n

ne0.83(1+log2(n))

and we have the trivial upper bound Φ(xn − 1) < 2n. Therefore,

47

6
n2 >

C(n)

2n
>

11

6
n2 + 2.616

n2

log2(n)
. �

5 Implementation details

In this section, we discuss some details of our implementation of Algorithm 2. We discuss our
development methodology in Section 5.1 and give a demonstration of the importance of practical
and efficient implementation in Section 5.2.

7

n 10 11 12 13 14 15 16 17 18 19

Theorem 1 (Hybrid) 210ms 323ms 604ms 1.4s 2.77s 5.72s 14.3s 30.1s 65s 157s
Implicit (Algorithm 2) 115ms 166ms 388ms 773ms 1.44s 2.84s 7.77s 12.8s 26.4s 55.9s

C++ (Algorithm 2) 3ms 3ms 4ms 8ms 13ms 29ms 52ms 113ms 188ms 415ms

Table 2. Runtime for complete exhaustive search of F2n over F2 with different normality checks: the first using
Theorem 1, and the second the implicit normality check as performed in Algorithm 2. Runtime for single-threaded
C++ implementation of Algorithm 2 is also given.

5.1 Development methodology

In this section, we discuss our methodology for determining which routines are most promising
for implementation at scale. Our methodology is to use a platform that is agile and simple to
test before spending a much larger effort to code an efficient C++ implementation.

For our experimental development, we use the Sage computer algebra system [15] running
in JuPyter Notebooks. Sage is open-source and is naturally linked to many other mathematical
libraries (like NTL). Sage is built on Python, so it is interpreted, object-oriented, not strongly
typed, and memory is internally managed.

JuPyter notebooks provide a user interface in a web browser linked to various kernels in
the back-end: in our case a Sage interpreter. Code is written in “cells”, which is particularly
convenient for testing experimental changes. Effectively, for our purpose, JuPyter notebooks
provides an easy-to-use, graphical, interactive interface to Sage. The trade-off of this ease of
development (say, over direct implementation in C++) is in overall performance and lack of
control over internals that our highly-efficient implementations use.

In our Sage notebook, we have a Normal Search object, which accepts functions as argu-
ments: in particular, specific implementations of canonicity checking, normality checking and
complexity computation (Algorithm 3). We find the most efficient implementation in each func-
tion class by profiling the main routine of each instance of Normal Search instantiated with
each set of distinct implementations in each function class.

We use simple timing and line-profiling inherited in the Sage notebook to compare imple-
mentations of Algorithms 1 and 2. In particular, we compare the use of a normality check in
Theorem 1 against the implicit normality check in Algorithm 3. In Table 2, we present compar-
ative timings for a Sage implementation of Algorithm 1 with added trace precomputation and
Algorithm 2 (the only difference between these algorithms is therefore the presence or absence
of normality checking due to Theorem 1). We observe that Theorem 1 gives slower runtimes;
this led us to do the careful analysis in Section 4.2. The third row of Table 2 also provides the
runtime of our high performance C++ implementation; see Section 5.2 for details.

We also used this comparative analysis to determine a more efficient implementation of
canonicity checking between the one that appeared in [11] and this work. In Table 3, we give
comparative timings for two different canonicity checks. We discuss this implementation in more
detail in Section 5.2.

Our Sage JuPyter notebook appears under the GitHub project [18].

5.2 High performance implementation of Algorithm 2

After determining candidates for efficient implementations in Sage, we code these in a C++

program using NTL for finite field arithmetic. We first implemented a single-threaded version
and profiled the code until the dominant subroutines are algorithmically necessary NTL internal
calls; see Figure 1, for example. We added two levels of parallelism: multi-node parallelism and
multi-threading for intra-node parallelism. We give more details on our profiling in this section

8

and on our parallel implementation in Section 5.3. As we see in Table 2, the absolute runtimes
in our C++ implementation are 100-fold faster than in Sage, but importantly we notice that the
relative timings of the two implementations are proportional.

Our reasoning for using NTL for arithmetic in our high-performance implementation included:

Familiarity: The authors have significant prior experience using NTL.
Comparability: Coding in NTL allowed us to compare our current code with the previous

version from [11].
Performance: NTL is a mature library focusing on performance and contains a particularly

fast implementation of F2n arithmetic.
Thread-safety: NTL has been thread-safe since version 7.0 (2014), though this feature has

matured greatly as of version 9.8.0 (2016). For ease of intra-node parallelism, we make use
of the BasicThreadPool library in NTL.

Exposure of pointers: NTL exposes pointers to arrays and to the bit representatives of ele-
ments of F2n , which is crucial for our implementation.

We do not make any attempt to write our own vectorized instructions, and we rely on
compiler optimizations to unroll loops and assign AVX instructions, if available. There may be
scope for this sort of assembly-level optimization, but this is outside of the authors’ area of
expertise.

While we present our algorithms for clarity, their implementations may differ slightly from
the presentation. Consider Algorithm 3, which accepts a putative normal basis and either returns
its complexity or ∞ if it is not a basis. Here, we step through this algorithm in detail to show
the differences that may occur between the implementation and the algorithmic description.

Algorithm 3 Check normality and calculate the complexity of a putative normal basis.

1: Input: A putative normal basis B = {α, α2, . . . , α2n−1

}
2: Returns: The complexity CB of the normal basis B if B is a basis, otherwise ∞
3:
4: Pα ←

(
α α2 · · · α2n−1

)
5: if det(Pα) = 0 then . New for Algorithm 2
6: return ∞
7: P ′α ← P−1

α

8: Bα ←
(
αα αα2 · · · αα2n−1

)
9: TB = (tij)

n−1
i,j=0 ← BαP

′
α . Multiplication table of B

10: return
∑
ij tij . Complexity of B, CB

1. Each element α2i is represented as an n-vector over F2 using an implicit basis of F2n over
F2.

2. The matrices Pα and Bα are initialized only once per thread, to save overhead.

3. The rows of the matrix Pα =
(
α α2 · · · α2n−1

)
are pointers assigned to the F2-vector repre-

sentation of α2i .
4. Since αα2i with i = 0 is simply α2, hence already stored, we save a multiplication in line 8.
5. In NTL, the matrix inverse function returns the determinant of a matrix, and if the matrix is

invertible procedurally stores the inverse in a passed argument. Hence, lines 5-7 are computed
using a single function call.

6. It is critical to performance to use the procedure versions of the matrix inverse in line 7 and
matrix multiplication in line 9 to avoid pass-by-values. In practice, we store P ′α = P−1α in
the existing Pα matrix and the product BαP

′
α in the Bα matrix.

9

7. NTL does not have a matrix weight function, so we compute the complexity of B from TB row-
by-row in line 10. We improved in performance over the NTL weight function by dereferencing
pointers to underlying NTL objects and calling the gnu built-in popcount intrinsic.

These low-level programming details are incredibly important to the efficiency of the imple-
mentation of the algorithm. We believe our presentation accurately represents the underlying
algorithms of our search in a clear fashion for the reader.

Efficient Gray code successor To realize an efficient iteration through F2n , we use an efficient
implementation of a Gray code successor algorithm, such as [9, Algorithm 2.3].

Proposition 5. Denote by H(g) the Hamming weight of g ∈ Fn2 . Let g0 = (0, 0, . . . , 0) ∈ Fn2
and let gi = (gi0, . . . , gi(n−1)) for i = 0, . . . , 2n − 1. Define S : Z>0 → Z≥0, where S(k) is the
number of trailing 0s in the binary expansion of k. Let gi+1 = gi + eS(i+1) for i ≥ 0. Then
G = {g0, g1, . . . , g2n−1} is a Gray code of length n.

In some compilers, the function S from Proposition 5 is given by a built-in intrinsic (for
example, in our code we use the gnu C++ compiler’s builtin ctzl intrinsic).

The importance of profiling: efficient canonical element checking This section high-
lights the interplay between theory and practice: namely, the interplay between fast algorithms
and computational complexity and the implementations of those algorithms. In particular, in
Section 4.3 we describe the computational complexity of our new exhaustive search Algorithm 2
in comparison to Algorithm 1 from [11], and in this section we discuss evaluating the actual
running time of the various components.

In our C++ development, we use the gperftools (formerly Google Performance Tools) pack-
ages for CPU profiling; detailed documentation is available [7]. The profiler aggregates data
about the “call tree” of a program. Specifically it samples a running program at regular in-
tervals, and records the function that is running at interrupt time along with all the functions
and its call stack. By analyzing the call tree, we can determine in a very practical sense the
CPU-time bottlenecks of the program. An example of a current call tree (given by kcachegrind

run on the output of gperftools) appears in Figure 1.

From the profiling output, we analyze bottlenecks in our implementation; for example, ineffi-
ciencies due to some objects being passed by value rather than by reference. The most surprising
bottleneck came in our canonical element routine, where we found that approximately one-third
of the total runtime was spent in this routine. While this routine is run 2n/n times for each
degree n, improving the runtime of this relatively simple subroutine was as important than
algorithmic improvements to the overall performance of the program.

In [11], we implemented a naive bit-by-bit lexicographical checker. After profiling, we ex-
perimented with various canonical element checkers, the most performant of which uses an
underlying integer representative of an element of F2n . Explicitly, if α =

∑n−1
j=0 bjζj is the ex-

pansion of α in an implicit basis {ζ0, . . . , ζn−1}, then its integer representation is
∑n−1

j=0 bj2
j .

We notice on average an approximate 25% improvement on overall runtime due to this new
implementation in both Sage development and C++ production versions. We give a comparison
of the runtimes of Algorithm 2 (in Sage) using these two routines in Table 3.

As indicated in Figure 1, after our optimizations the dominant functions in the call graph are
NTL internal functions, indicating that we are reaching the limit of the efficiency of implementing
the current algorithm.

10

Fig. 1. Call tree for single-node C++/NTL implementation of Algorithm 2 for F232 over F2.

5.3 Parallelism of Algorithm 2

Algorithm 2 is an example of an embarrassingly parallel application; that is, the search function
requires no communication between workers, so with an appropriate implementation we can
avoid overhead in parallelism.

Due to the embarrassingly parallel nature of the search, we do not attempt any thread
boosting of the underlying arithmetic. For example, in the Gray code successor, we could update
(α+ej)

2i = α2i+e2
i

j for multiple i in parallel. However, this would reduce the number of available
threads and would require a barrier after this computation to ensure data coherence. Hence, we
only implement parallelism by partitioning the search space according to Gray code rank.

Our test system was a single 2-core Core i7-4500 CPU with 1.80 GHz clock speed run
within a Linux virtual machine. We ran the code on a variety of available systems; in all cases
the systems were Intel Core x86 64 architectures with AVX instructions. The code was compiled
with the GNU C++ compiler version 7.x and NTL version 10.5.0 compiled with thread safety (NTL
version 11.0.0 was released after the pre-proceedings version of this paper).

The combination of iteration through elements in Gray code order with a canonicity check
forces an imbalance in the computation, since the relatively expensive Algorithm 3 computation
is performed for elements with extreme integer representation. To mitigate this imbalance, we
partition the search space into a large number of “tasks”. Each task represents a contiguous

11

n 10 11 12 13 14 15 16 17 18 19

Integer rep. 111ms 168ms 354ms 748ms 1.45s 3.07s 6.32s 12.9s 26.1s 55.3s
Bit-by-bit 130ms 250ms 456ms 951ms 1.87s 3.89s 7.71s 16.7s 32.2s 72s

Table 3. Runtime for Sage implementation of the exhaustive search of F2n over F2 with two lex-first checks:
integer representative and bit-by-bit comparison.

region of Gray code indices; in practice, the number of tasks is set to be much larger than the
number of available compute nodes, and compute nodes are assigned to tasks asynchronously.

When a compute node is assigned a task, it initializes a pool of nc threads, where nc is the
number of cores on the node. The task is partitioned into nc equally-sized sub-tasks executed
synchronously in parallel one per thread. While asynchronous execution at the thread level may
be preferable, in practice we assign a sufficient number of tasks that any overhead is acceptable.

We have implemented parallelism in a variety of ways. For intra-node parallelism, we orig-
inally had a direct pthreads implementation, but for simplicity we eventually removed this in
favour of using NTL’s built in intrinsics. For inter-node parallelism, an earlier version of the code
used MPI to distribute tasks to nodes. This is an acceptable strategy if a single executable
is required, but specifying asynchronous computation, dealing with load-balancing and check-
pointing prove to be complicated. Our preferred program accepts as input the task index as a
command-line argument and is run independently one-per-node. This has the benefit of being
able to rely on gnu compilers and not rely on platform-specific (and often less performant) com-
pilers. In practice we assign a number of tasks so that all but the most expensive tasks finish
within 5 (or so) minutes. This paradigm requires some additional job-scheduling by the user,
but this can be a feature when using highly-shared computing platforms.

We observe that this computation is an excellent candidate for GPU processing, since min-
imal data communication is required between the CPU and GPU. However, we do not have a
pool of GPUs readily available for use, nor do we have the expertise to attempt a port of NTL,
or other underlying field arithmetic library, to CUDA/GPUs. We leave this for future work.

6 Results and future work

We conclude this paper by presenting the main result of the search, an update to the minimum
complexity of a normal basis of F2n over F2, n = 40, . . . , 46. We also present a number of avenues
for future work. Our reference code can be accessed through GitHub [18]. See the documentation
on that page for instructions on building and running the code.

By defining the macro ALL BASES at compile-time, the code will print a F2-vector represent-
ing every normal basis, along with its complexity. Similarly, by defining ALL TABLES, the code
will print the multiplication tables of all bases. For a sense of scale, for n ≤ 29, the ALL BASES

output totaled just over 1GB, and for n ≤ 25 the ALL TABLES output totaled 1.5GB. Some
compressed output is available in the GitHub repository [18].

In most cases, the basis with the minimum complexity in F2n over F2 is unique. Two excep-
tions occur when n = 18 and n = 19. The n = 18 case is very special: it satisfies the conditions
for both types of so-called “optimal normal bases” (bases with minimum possible complexity).
Whether the n = 19 case is causal or a combinatorial surprise is unknown to us.

6.1 Running time of Algorithm 2

Table 4 provides the runtime for our high performance implementation of Algorithm 2 for
30 ≤ n ≤ 39.

12

n 30 31 32 33 34 35 36 37 38 39

CPU time (log2(sec)) 9.35 10.58 11.60 12.54 13.75 14.59 15.60 16.87 17.84 18.84

Table 4. CPU time for high performance implementation of Algorithm 2 on Intel Broadwell at 2.3GHz.

Our largest computation was for n = 46, which totaled 20, 801 CPU-hours on Intel Broadwell
CPUs at 2.3 GHz. In core-wall-time, this totaled 24, 816 hours, indicating a near 20% overhead.
This was a noticeable result of the synchronous execution of threads within the most compute-
intensive tasks. For our eventual computation of 47 ≤ n ≤ 49, we can mitigate this either by
implementing asynchronous thread execution within a task, or reducing the size of the most
compute-intensive tasks to mitigate any overhead.

By Theorem 4, Algorithm 2 scales exponentially in n, plus a quadratic factor. This can be
seen for example, with some variability, in Tables 2 and 3. Based on the running time for n = 46
and assuming stability and homogeneity on production systems, we estimate approximately
287, 000 CPU hours, or approximately 33 CPU years, to complete the searches for 47 ≤ n ≤ 49.
This is well within the resource allocation budgets of, for example, annual Compute Canada
awards; see [2], for more information.

6.2 Changes to table of minimal complexity normal bases

In [11], we presented tables of the minimum known complexity of a normal basis of any exten-
sion F2n over F2. These tables were repeated in [13, Section 2.2]. Our results here update the
exhaustive tables in [11, 13]. Also in [11, 13], there appears a table of the minimum known com-
plexity of F2n over F2 for n ≥ 40 using all known methods and constructions. All non-explicit
constructions take known normal bases from either subfields or extensions and use them to
build normal bases in extensions and subfields, respectively.

In Table 5 we present the results of the search for 40 ≤ n ≤ 46. Each number i in the
set in the second column represents the term xi appearing in the minimal polynomial of the
basis. A Sage code snippet to check the minimal polynomial for n = 45 follows in Figure 2.
For 40 ≤ n ≤ 46, we find no elements having smaller complexity than those that appear in [13,

Fig. 2. Code snippet to check the complexity of a normal basis from its minimal polynomial.

Table 2.2.10]. These complexities are confirmed as the minimum complexities of any normal
basis of F2n over F2, but no additional updates to [13, Table 2.2.10] result from bootstrapping
methods.

Our eventual goal is to complete the search for 47 ≤ n ≤ 49. The most likely candidate to
find a previously unknown minimum complexity basis is in the n = 48 case, since the best known

13

n Nonzero terms of minimal polynomial Complexity

40 {40, 39, 37, 34, 31, 26, 24, 23, 21, 19, 18, 16, 9, 5, 0} 189
41 {41, 40, 38, 37, 36, 33, 32, 22, 21, 20, 17, 16, 9, 8, 6, 5, 4, 1, 0} 81
42 {42, 41, 40, 38, 36, 35, 31, 30, 26, 23, 22, 20, 19, 18, 15, 12, 3, 2, 0} 135
43 {43, 42, 40, 37, 35, 33, 31, 30, 29, 28, 27, 25, 24, 22, 20, 18, 14, 12, 11, 9, 8, 7, 5, 3, 0} 165
44 {44, 43, 42, 40, 35, 33, 30, 28, 27, 26, 25, 24, 23, 21, 19, 18, 17, 12, 11, 10, 9, 5, 3, 2, 0} 147
45 {45, 44, 42, 41, 40, 39, 38, 37, 33, 30, 23, 20, 18, 16, 14, 13, 12, 11, 9, 6, 2, 1, 0} 153
46 {46, 45, 44, 42, 40, 39, 36, 32, 29, 28, 26, 23, 20, 15, 13, 10, 7, 4, 0} 135

Table 5. Minimum complexity normal basis generator of F2n over F2.

complexity here is 425: easily the largest minimum complexity for any n < 57. We do not expect
to extend the table beyond n = 50, since there are optimal normal bases for n = 50, 51, 52, 53,
and for n = 54 there is a normal basis with complexity 4n − 7 by construction, so we expect
that this basis is minimal. Searching n ≥ 55 is well out of reach for reasonable computational
resources.

6.3 Choice of basis representation

All NTL field arithmetic is represented using a polynomial (or power) basis. Suppose instead
that we choose a normal basis representation. For any α ∈ F2n , computing the set B =
{α, α2, . . . , α2n−1} under normal basis representation can be done by a series of cyclic bit shifts,
so we no longer need to iterate through F2n in Gray code order.

In normal basis representation, we also keep an efficient cut-down from the trace computa-
tion. Recall that Tr(α) = α + α2 + · · · + α2n−1

, where α2i is the i-fold shift of the underlying
bit vector of α. Hence Tr(α) =

∑n−1
j=0 αj (mod 2), where αj is the jth bit of α in normal basis

representation. The weight of a vector can be taken by modern computer architectures in a
single popcount operation, hence the trace computation can be considered essentially free.

Regardless of basis, calculating normality (either by gcd as in Theorem 1 or by matrix
inversion) and complexity requires computing field multiplications. Moreover, the cost of mul-
tiplication depends precisely on the complexity of the underlying basis. A priori, we expect a
random basis of F2n over F2 to have complexity about n2/2, see [11], hence this multiplication
will be expensive until after we find a low-complexity normal element.

Other (non-normal) bases may be appropriate as well, but any other choice of basis would
require hand-rolling a new finite field arithmetic library. Hence, we leave this for future work.

6.4 A best-case scenario

Any algorithm that goes exhaustively through every normal element computing their bases must
have cost at least

(n− 1)M(n)
Φ(xn − 1)

n
,

where Φ(xn − 1)/n is the number of normal basis of F2n over F2. This expression assumes that
we compute the representation of Bi = αα2i for i = 1, . . . , n−1, while looping only over normal
elements and also having Bi represented immediately in the normal basis. It is unclear that the
latter part is even possible. However, it is possible in spirit to loop over only normal elements
using the primary decomposition, seen in [3], for example. We state the main result as follows.

Proposition 6. Let q = pe for some prime p and positive integer e and let gcd(n, p) = 1 so that
xn− 1 = f1f2 · · · fk, where the fi are distinct irreducible factors over Fq. If fi(x) =

∑n
j=0 fijx

j,

14

let Fi(x) =
∑n

j=0 fijx
qj . Each Fi is a linearized polynomial, hence a linear operator over Fq, and

its roots form a vector subspace of Fqn over Fq that is stable under qth powers. Let Vi = ker(Fi),
then α =

∑
1≤i≤k αi with αi ∈ Vi is a normal element of Fqn over Fq if and only if αi 6= 0 for

all 1 ≤ i ≤ k.

Proposition 6 can be modified to remove the restriction on the field degree, though the
choices of αi become more complicated. In order to iterate through only normal elements, we
can iterate through the nonzero elements of each of the Vi vector subspaces of Fqn . It is unclear
how to do this efficiently, so we leave this for future work.

6.5 The case n = 64

We are still unaware of any low complexity normal bases of F2n over F2 when n is a power of
2, except for those obtained by exhaustive search (n = 2`, ` ≤ 5). When n is a power of 2, we
realize a dramatic speedup due to the following specific version of Proposition 3.

Proposition 7. [13, Corollary 5.2.9] An element α ∈ F264 is normal if and only if Tr(α) 6= 0.

By Proposition 7, precisely 263 elements of F264 are normal, so with a trace pre-computation
all elements passing into Algorithm 3 are normal. Hence, with the canonicity check, we compute
the complexity of exactly 257 elements. Each computation requires 63 multiplications (each
estimated at 642 bit operations) and a 64 × 64 matrix inversion over F2 (estimated at 643

bit operations), so in total we estimate at least 276 bit operations to calculate all of their
complexities. This seems out of reach for reasonable modern computational power. This cost
may be lowered by a few bits using an early-abort strategy, but any such exhaustive search is
likely to be untenable for the foreseeable future. Of course, any algorithm that inspects every
element of F264 , as ours does, has 264 as a lower bound on the running time.

Acknowledgement We would like to thank the three reviewers for their helpful suggestions,
which greatly improved the presentation of this paper.

References

1. F. Arnault, E. J. Pickett, S. Vinatier, Construction of self-dual normal bases and their complexity, Finite
Fields and Their Applications, 18 (2012), 458-472.

2. Compute Canada, 2018 Final Allocations for Publication, available: https://www.computecanada.ca/

research-portal/accessing-resources/resource-allocation-competitions/rac-2018-results/, last
date accessed May 17, 2018.

3. I. F. Blake, S. Gao and R. C. Mullin, Specific irreducible polynomials with linearly independent roots over
finite fields, Linear Algebra and Its Applications, 253 (1997), 227-249.

4. S. Gao and H. W. Lenstra, Optimal normal bases, Designs, Codes and Cryptography, 2 (1992), 315–323.
5. S. Gao and D. Panario, Density of normal elements, Finite Fields and Their Applications, 3 (1997), 141–150.
6. J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press, Cambridge UK,

2013.
7. gperftools, Authors unlisted c© Google Inc. (2005), documentation available online www.github.io/

gperftools, last date accessed: March 27, 2018.
8. D. Jungnickel, Finite Fields: Structure and Arithmetics, Bibliographisches Institut, Mannheim GE, 1993.
9. D. L. Kreher and D. R. Stinson, Combinatorial Algorithms: Generation, Enumeration and Search, CRC

Press, Boca Raton, FL, 1999.
10. R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, Oxford UK, 1997.
11. A. Masuda, L. Moura, D. Panario and D. Thomson, Low complexity normal elements over finite fields of

characteristic two, IEEE Transactions on Computers, 57 (2008), 990–1001.
12. R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone and R. M. Wilson, Optimal normal bases in GF (pn), Discrete

Applied Mathematics, 22 (1988/9), 149–161.
13. G. L. Mullen and D. Panario, Handbook of Finite Fields, CRC Press, Boca Raton, 2013.

15

14. National Institute for Standards in Technology, Digital Signature Standard FIPS PUB 186-4, 2013.
15. SageMath, the Sage Mathematics Software System (Version 7.1.0), The Sage Developers, 2018, http://www.

sagemath.org.
16. V. Shoup, NTL: Number Theory Library, documentation available online www.shoup.net/ntl, last date

accessed: March 3, 2018.
17. D. Silva and F. Kschischang, Fast encoding and decoding of Gabidulin codes, 2009 IEEE International

Symposium on Information Theory, 2009, 2858–2862.
18. D. Thomson, Exhaustive search for normal basis, Version 1.0.0, www.github.com/dgthoms/exh_normal, last

updated: May 26, 2018.

16

