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Abstract. In this paper we investigate various differential properties of
generalized Boolean functions defined on Fn

2 with values in Z2k , k ≥ 2.
We characterize linear structures for the generalized Boolean functions
in terms of their binary expansion components, and find all symmetric
generalized bent functions. Next, we show that there are no symmetric
balanced functions defined on Fn

2 with values in a group of order 2k, k ≥
2, a contrast to the classical case for k = 1, commonly known as the
bisection of binomial coefficients. Further, we characterize the avalanche
features of a generalized Boolean function in terms of differentials. Lastly,
we show that a partially gbent function is plateaued.
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1 Introduction

In [27], Schmidt found a connection between words in multi-carrier code-division
multiple access (MC-CDMA) systems and generalized bent functions from Fn2
to Z4, as well as functions from Fn2 to Zq were considered from the viewpoint
of cyclic codes over rings. Shortly thereafter, generalized Boolean functions be-
came an active area of research [17,21,23,24,27,28,29]. Many authors [8,9,18]
have investigated linear structures of Boolean functions. However, thus far, little
has been written about linear structures, symmetry, balancedness and avalanche
features of generalized Boolean functions.



Let Vn be an n-dimensional vector space over the two-element field F2 and
for an integer q, let Zq be the ring of integers modulo q. By ‘+’ and ‘−’ we
respectively denote addition and subtraction modulo q, whereas ‘⊕’ denotes the
addition over Vn. We call a function from Vn to Zq (q ≥ 2) a generalized Boolean
function on n variables and denote the set of all generalized Boolean functions
by GBqn and when q = 2, by Bn. If q = 2k for some k ≥ 1 we can associate to any
f ∈ GBqn a unique sequence of Boolean functions ai ∈ Bn (i = 0, 1, . . . , k − 1)
such that

f(x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x), for all x ∈ Vn.

It has been observed, see [14,22,23,30], that the Boolean functions ai, and furt-
hermore all Boolean functions of the form ak−1⊕ ck−2ak−2⊕ · · ·⊕ c0a0, ci ∈ F2,
0 ≤ i ≤ k − 2, play an important role in the analysis of properties of functions
f ∈ GBqn. In accordance with the terminology for vectorial bent functions, we
call those Boolean functions components of f or component functions of f .

If Vn is Fn2 , then the (Hamming) weight of x = (x1, . . . , xn) ∈ Vn is denoted
by wt(x) and equals

∑n
i=1 xi (the Hamming weight of a function is the weight of

its truth table, that is, its output vector). The cardinality of a set S is denoted
by |S|.

For a generalized Boolean function f : Vn → Zq we define the generalized
Walsh-Hadamard transform to be the complex valued function

H(q)
f (u) =

∑
x∈Vn

ζf(x)q (−1)u·x,

where ζq = e
2πi
q and u · x denotes a (nondegenerate) inner product on Vn (for

easy writing, we sometimes use ζ, Hf , instead of ζq, respectively, H(q)
f , when q is

fixed). If Vn = Fn2 , the vector space of the n-tuples over F2, then for u ·x we use
the conventional dot product. For q = 2, we obtain the usual Walsh-Hadamard
transform

Wf (u) =
∑
x∈Vn

(−1)f(x)(−1)u·x.

The sum

Cf,g(z) =
∑
x∈Vn

ζf(x)−g(x⊕z)

is the crosscorrelation of f and g at z ∈ Vn. The autocorrelation of f ∈ Bn at
u ∈ Vn is Cf,f (u) above, which we denote by Cf (u). Recall [29] that if f, g ∈ GBqn,
then ∑

u∈Vn

Cf,g(u)(−1)u·x = Hf (x)Hg(x),

Cf,g(u) = 2−n
∑
x∈Vn

Hf (x)Hg(x)(−1)u·x.



Taking the particular case f = g we obtain

Cf (u) = 2−n
∑
x∈Vn

|Hf (x)|2(−1)u·x.

A function f : Vn → Zq is called generalized bent (gbent) if |Hf (u)| = 2n/2

for all u ∈ Vn. We recall that a Boolean function f for which |Wf (u)| = 2n/2 for
all u ∈ Vn is a bent function, which only exists for even n. Further recall that
f ∈ Bn is called plateaued if |Wf (u)| ∈ {0, 2(n+s)/2} for all u ∈ Vn for a fixed
integer s depending on f (we then also call f s-plateaued). If s = 1 (n must then
be odd), or s = 2 (n must then be even), we call f semibent.

Given a Boolean function f , the derivative of f with respect to a vector a,
denoted by Daf , is the Boolean function defined by

Daf(x) = f(x⊕ a)⊕ f(x), for all x ∈ Vn.

For more on Boolean functions, the reader can consult the following excellent
references [1,2,3,7,25,31].

2 Derivatives and linear structures in the generalized
Boolean functions’ context

Given a generalized Boolean function f : Vn → Zq, we define the derivative

D
(q)
a f of f with respect to a vector a ∈ Vn to be the generalized Boolean

function D
(q)
a f : Vn → Zq

D(q)
a f(x) = f(x⊕ a)− f(x), for all x ∈ Vn.

When there is no danger of confusion, we write Daf in lieu of D
(q)
a f .

We say that a ∈ Vn is a linear structure of a generalized Boolean function
f ∈ GBqn if the derivative of f with respect to a is constant, that is, f(x⊕ a)−
f(x) = c ∈ Zq constant, for all x ∈ Vn. Observe that if a1,a2 are linear structures
for f , then there are constants c1, c2 such that f(x⊕ a1 ⊕ a2)− f(x⊕ a2) = c1,
f(x⊕a2)−f(x) = c2, for all x, which by summing renders f(x⊕a1⊕a2)−f(x) =
c1 + c2 for all x. Thus, we see that the set of all linear structures (including 0)
forms a vector subspace in Vn, which we will denote by LSq(f) (and when q is
fixed, we may write LS(f)). From here on, we let q = 2k.

We begin with a characterization for the linear structures of a generalized
Boolean function in terms of the generalized Walsh-Hadamard transform. Let
Sf = {x ∈ Vn |Hf (x) 6= 0} (the generalized Walsh-Hadamard support) and
for a vector a, let a⊥ be the orthogonal complement of a, that is, a⊥ = {x ∈
Vn |a · x = 0}. This is a terminology widely used in linear algebra, although
there may be a nontrivial intersection between a subspace and its orthogonal
complement. From Parseval’s identity, we immediately infer that Sf 6= ∅.

We might be tempted to conjecture that linear structures for the components
transfer to linear structures for the generalized Boolean function, but that is not



true, as we argue next: for example, let n ≥ 3, k ≥ 2, and f(x) = a0(x) in

GB2
k

n , where a0(x1, . . . , xn) = x1 · · ·xn−2(xn−1 ⊕ xn) in Bn. We observe that
(0, . . . , 1, 1) ∈ LS2(a0), since f(x1, . . . , xn−1 ⊕ 1, xn ⊕ 1) = f(x1, . . . , xn−1, xn)
over F2. However, f(x1, . . . , xn−1⊕1, xn⊕1) = f(x1, . . . , xn−1, xn)+2x1 · · ·xn−2
over Z2k , thus, Daf(x) = 2x1 · · ·xn−2, and therefore (0, . . . , 0, 1, 1) 6∈ LS2k(f).

In reality, the next result settles the “score”, by completely characterizing
linear structures for the generalized Boolean functions in terms of their compo-
nents.

Theorem 1. Let f ∈ GB2
k

n , with f(x) =
∑k−1
i=0 2iai(x), ai ∈ Bn. The following

are equivalent:

(i) The vector a is a linear structure for f .
(ii) The vector a satisfies ζf(a)−f(0) = (−1)a·w, for all w ∈ Sf .

(iii) The vector a is a linear structure for ai, i ≥ 0, such that ai(a) = ai(0), 0 ≤
i < k − 1.

Proof. We first show (i) ⇔ (ii). Let g(x) := f(x ⊕ a) − c, for some constant
c ∈ Z2k , a ∈ Vn. Then

Hg(w) =
∑
x∈Vn

ζg(x)(−1)x·w

=
∑
x∈Vn

ζf(x⊕a)−c(−1)x·w

y:=x⊕a
= ζ−c(−1)a·w

∑
y∈Vn

ζf(y)(−1)y·w

= ζ−c(−1)a·wHf (w).

Now, if a is a linear structure, then (with the above notation) g(x) = f(x) (where
c = f(a) − f(0)), hence Hg(w) = Hf (w). Thus, ζ−c(−1)a·wHf (w) = Hf (w),
which renders Hf (w) (1− ζ−c(−1)a·w) = 0. Therefore, taking any w ∈ Sf 6= ∅,
we get that ζc = (−1)a·w, and since ζ is a primitive 2k-root of unity, then
necessarily, c = 0 or 2k−1, depending on whether w ∈ a⊥, or not. The converse
is also true.

Next we show (i) ⇔ (iii). If f ∈ GB2
k

n with f(x) =
∑k−1
i=0 2iai(x), a0 ∈ Bn,

then it is easy to see (by reducing modulo 2) that if a is a linear structure for f ,

and consequently, D
(2k)
a f(x) =

∑k−1
i=0 2i (ai(x⊕ a)− ai(x)) = c ∈ Z2k , then a is

a linear structure for a0 whose derivative is D
(2)
a f(x) = a0(x ⊕ a) ⊕ a0(x) = c

(mod 2).

Let f ∈ GB2
k

n and write f(x) = a0(x) + 2f1(x), where a0 ∈ Bn, f1 ∈ GB2
k−1

n .
Assume that a is a linear structure for f and so, Daf(x) = c ∈ Zq (independent
of x). We compute Daf , and obtain (using (ii))

Da(f)(x) = (a0(x⊕ a)− a0(x)) + 2 (f1(x⊕ a)− f1(x)) = c ∈ {0, 2k−1}. (1)

Thus, a0(x) = a0(x⊕a), and from Equation (1), we infer that f1(x⊕a)−f1(x) =
c

2
∈ {0, 2k−2} in Z2k−1 . Therefore, a is a linear structure for f1, in addition to



being a linear structure for a0. Inductively, we infer (by the uniqueness of the
binary representation) that for all x, ai(x⊕ a)− ai(x) = 0, for 0 ≤ i < k − 2. If
ak−1(x⊕a)−ak−1(x) = 0, then f(x⊕a)−f(x) = 0, and if ak−1(x⊕a)−ak−1(x) =
±1, then f(x⊕ a)− f(x) = 2k−1. Certainly, the reciprocal is true and the claim
is shown. ut

Corollary 1. Let f ∈ GB2
k

n . If a is a linear structure for f , then either Sf ⊆ a⊥,

or Sf ⊆ a⊥ (the set complement of a⊥); also, if a is a linear structure for f ,
then f(a)− f(0) ∈ {0, 2k−1}.

Remark 1. It is immediate that if f is a generalized bent Boolean function then
f has no linear structure.

Next, we will use the method of Lechner [19] and Lai [18] to simplify the
algebraic normal form of a function admitting linear structures. The result is
similar and we give here the proof for the reader’s convenience. We shall use
below the observation that if a is a linear structure for f , then f(x⊕a)−f(x) = c,
where c = f(a)− f(0).

Proposition 1. Let f ∈ GB2k

n and 1 ≤ dimLS2k(f) = r. Then, there exists an
invertible n× n matrix A such that

f((x1, . . . , xn) ·A) =

r∑
i=1

αixi + g(xr+1, . . . , xn),

where αi ∈ Z2k and g ∈ GB2k

n−r is a generalized Boolean function with no linear
structure.

Proof. Since dimLS2k(f) = r, we let {a1, . . . ,ar} be a basis for LS2k(f), which
can be completed to a basis for Fn2 , say, {a1, . . . ,ar,ar+1, . . . ,an}. We now
define the matrix A to be the matrix corresponding to the change of basis
from the canonical basis {e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)} to the ba-
sis {a1, . . . ,an}, that is, ai = eiA, 1 ≤ i ≤ n. Note that if x ∈ F2, then
f(xa) − f(0) = x (f(a)− f(0)). Further, using the fact that ai (hence aixi, as
well), 1 ≤ i ≤ r, are linear structures for f , we obtain

f((x1, . . . , xn) ·A) = f

((
n∑
i=1

eixi

)
·A

)
= f (a1x1 ⊕ · · · ⊕ arxr ⊕ · · · ⊕ anxn)

= f (a2x2 ⊕ · · · ⊕ arxr ⊕ · · ·+ anxn) + f(x1a1)− f(0)

= f (a2x2 ⊕ · · · ⊕ arxr ⊕ · · ·+ anxn) + x1 (f(a1)− f(0))

= f (a3x3 ⊕ · · ·+ anxn) + x1 (f(a1)− f(0)) + x2 (f(a2)− f(0))

· · · · · · · · ·

=

r∑
i=1

αixi + f(xr+1ar+1 ⊕ · · · ⊕ xnan),



where αi := f(ai)− f(0), so g(xr+1, . . . , xn) := f(xr+1ar+1 ⊕ · · · ⊕ xnan).
To show the last claim, observe that if (br+1, . . . , bn) is a linear structure

for g, then b = (0, . . . , 0, br+1, . . . , bn) · A is a linear structure for f (and b is
independent of a1, . . . ,ar), since A is invertible and

f(x ·A⊕ b) =

r∑
i=1

αixi + g((xr+1, . . . , xn)⊕ (br+1, . . . , bn))

=

r∑
i=1

αixi + g(xr+1, . . . , xn) + g(br+1, . . . , bn)− g(0)

= f(x ·A) + f(b)− f(0), for all x.

This contradicts the fact that dimLS2k(f) = r, and the theorem is shown. ut

3 Symmetric generalized Boolean functions

In this section Vn = Fn2 , the vector space of n-tuples over F2. Savicky [26] (see
also [13]) showed that for each even n, the only symmetric bent functions are
the quadratic symmetric functions Sc,d(x) = s2(x)⊕ cs1(x)⊕d, c, d ∈ F2, where
s1, s2 are the elementary symmetric polynomials of degree 1, respectively 2. In
this section we show that for any (even or odd) n, the only symmetric generalized

bent Boolean function in GB2k

n , k ≥ 2, is essentially the quaternary function
s1(x) + 2s2(x). In the second part, we show that there is no balanced symmetric

generalized Boolean function in GB2k

n , k > 1.
We shall be using the following result on generalized Boolean bent functions,

which for n even first appeared in [23, Theorem 18]. For odd n we may refer
to [22,30].

Proposition 2. Let f(x) be a gbent function in GB2
k

n , k > 1, (uniquely) given
as

f(x) = a0(x) + 2a1(x) + · · ·+ 2k−2ak−2(x) + 2k−1ak−1(x), (2)

ai ∈ Bn, 0 ≤ i ≤ k − 1.

(i) If n is even, then all Boolean functions of the form

gc(x) = c0a0(x)⊕ c1a1(x)⊕ · · · ⊕ ck−2ak−2(x)⊕ ak−1(x),

c = (c0, c1, . . . , ck−2) ∈ Fk−12 , are bent functions. In particular, a0(x) +
2a1(x) is a quaternary gbent function if and only if a1 and a1⊕ a0 are bent.

(ii) If n is odd, then all Boolean functions of the form

gc(x) = c0a0(x)⊕ c1a1(x)⊕ · · · ⊕ ck−2ak−2(x)⊕ ak−1(x),

c = (c0, c1, . . . , ck−2) ∈ Fk−12 , are semibent functions. Moreover for every
u ∈ Vn we either haveWgc(u) 6= 0 for all c = (c0, c1, . . . , ck−2) with ck−2 = 0
or for all c with ck−2 = 1 (but not for both). In particular, a0(x) + 2a1(x) is
a quaternary gbent function if and only if a1 and a1 ⊕ a0 are semibent such
that Wa1(u) = 0 if and only if Wa1⊕a0(u) 6= 0.



By Proposition 2, for a gbent function f in GB2k

n given as in (2), ak−1 +
〈a0, . . . , ak−2〉 is an affine space of bent, respectively, semibent functions. As
pointed out in [14], every gbent function for which the coordinate functions
{a0, . . . , ak−2} are linearly dependent, can be reduced to a gbent function in

GB2
k′

n , for some k′ < k and linearly independent coordinate functions. Conver-

sely we can see f as a naturally lifted version of the gbent function in GB2k
′

n

with a very restricted value set in Z2k . Hence for the classification of (sym-
metric) generalized bent functions, it is essential to consider only functions for
which {a0, . . . , ak−2} are linearly independent.

A vectorial function f : Fn2 → Fk2 given as f(x) = (a0(x), a1(x), . . . , ak−1(x))
is symmetric if and only if every coordinate function ai, 0 ≤ i < k, is symmetric.
A similar statement applies to generalized Boolean functions (we omit the proof).

Lemma 1. Let f : Fn2 → Z2k , k ≥ 2, and f(x) =
∑k−1
i=0 2iai(x), ai ∈ Bn. Then

f is symmetric if and only if all components ai are symmetric, 0 ≤ i < k.

Since for odd n we require symmetric semibent functions, we will use the
methods of [26] to also investigate semibent functions. The standard examples
of semibent functions are partially bent functions with a one-dimensional linear
space. Recall that a partially bent function f is defined as a function for which
for all a ∈ Fn2 , the derivative Daf is either balanced or constant. All quadratic
functions are partially bent, but by a construction in [32] there exist semibent
functions, which are not partially bent.

We start our analysis by observing that s2(x) =
(
wt(x)

2

)
mod 2 and (s2 ⊕

s1)(x) =
(
wt(x)

2

)
+ wt(x) mod 2, hence

s2(x) =

{
0 : wt(x) ≡ 0, 1 mod 4
1 : wt(x) ≡ 2, 3 mod 4

(s2 ⊕ s1)(x) =

{
0 : wt(x) ≡ 0, 3 mod 4
1 : wt(x) ≡ 1, 2 mod 4

.

(3)

Before we show that Sc,d = s2 ⊕ cs1 ⊕ d, c, d ∈ F2, is semibent, when n is odd,
we recall that the Walsh transform of a symmetric function f : Fn2 → F2 is (see
[26, Equation (1)]),

Wf (u) =

n∑
k=0

(−1)ck
∑

wt(x)=k

(−1)u·x =

n∑
k=0

(−1)ckPk(wt(u), n), (4)

where ck = f(x) if wt(x) = k, and Pk is the Krawtchouk polynomial [20]. In
particular, if wt(u1) = wt(u2), then Wf (u1) = Wf (u2). We furthermore will
use the generating function of Pk, which is given by (see [26, Equation (2)]),

(1− z)wt(u)(1 + z)n−wt(u) =

n∑
k=0

Pk(wt(u), n)zk. (5)



Proposition 3. Let n be odd, and Sc,d(x) = s2(x)⊕ cs1(x)⊕ d, c, d ∈ F2.

(i) The symmetric function Sc,d is a semibent function with linear space LS(Sc,d) =
{0,1}.

(ii) A symmetric semibent function f : Fn2 → F2 cannot have the vectors of
weight (n − 1)/2 and the vectors of weight (n + 1)/2 in the support of its
Walsh transform.

(iii) The functions Sc,d are the only symmetric semibent functions, which have a
vector of weight (n − 1)/2 or a vector of weight (n + 1)/2 in the support of
their Walsh transform.

Proof. We first show (i). Since s2 is quadratic, it is a partially bent function.
We have to show that LS(s2) has dimension 1. Observe that

Da(s2) = s2(x⊕ a)⊕ s2(x) =

n⊕
i=1

ai

n⊕
j=1
j 6=i

xj ⊕ C.

Inserting the unit vectors ei, we infer that Da(s2) is constant if and only if a = 0
or (since n is odd) a = 1. This shows for all c, d ∈ F2 that Sc,d is semibent with
linear space {0,1}.
We next show both (ii) and (iii). We determine the Walsh transform of a sym-
metric function f at a vector u1 of weight wt(u1) = (n − 1)/2. With (5), we
straightforwardly see that for k = 2l and k = 2l+ 1, 0 ≤ l ≤ (n− 1)/2, we have

∑
wt(x)=k

(−1)u1·x = (−1)l
(n−1

2

l

)
.

Consequently, by (4),

Wf (u1) =

(n−1)/2∑
l=0

(−1)c2l(−1)l
(n−1

2

l

)
+

(n−1)/2∑
l=0

(−1)c2l+1(−1)l
(n−1

2

l

)

=

(n−1)/2∑
l=0

(−1)l
(n−1

2

l

)
((−1)c2l + (−1)c2l+1) .

Similarly for a vector u2 of weight wt(u2) = (n+ 1)/2 we obtain

Wf (u2) =

(n−1)/2∑
l=0

(−1)l
(n−1

2

l

)
((−1)c2l − (−1)c2l+1) .

Suppose thatWf (u1) = ±2(n+1)/2. Then we must have (−1)l((−1)c2l+(−1)c2l+1) =
2 for all 0 ≤ l ≤ (n − 1)/2 (then Wf (u1) = 2(n+1)/2), or (−1)l((−1)c2l +
(−1)c2l+1) = −2 for all 0 ≤ l ≤ (n − 1)/2 (then Wf (u1) = −2(n+1)/2). In the
first case, we have c2l = c2l+1 = 0 if l is even, and c2l = c2l+1 = 1 if l is odd. (It
is the other way around in the second case.) It immediately follows then that



Wf (u2) = 0. Moreover, with (3) we see that Wf (u1) = ±2(n+1)/2 implies that
f = s2 or f = s2 ⊕ 1.

If on the other hand Wf (u2) = ±2(n+1)/2, with the same reasoning we see
that Wf (u1) = 0, and f = s2 ⊕ s1 or f = s2 ⊕ s1 ⊕ 1. ut

Since for a symmetric function f : Fn2 → F2 we have Wf (u1) = Wf (u2)
if wt(u1) = wt(u2) and the support of the Walsh transform of a semibent
function has cardinality 2n−1, a symmetric semibent function induces a bi-
section of the binomial coefficients, i.e., a subset S of {0, . . . , n} such that∑
j∈S

(
n
j

)
=
∑
j 6∈S

(
n
j

)
= 2n−1. For odd n, the trivial bisections are the sets

S that contain exactly one of
(
n
j

)
and

(
n
n−j
)

for all 0 ≤ j ≤ (n− 1)/2. Bisections

of polynomial coefficients is a quite frequently studied problem [6,11,12,16]. It is
not known for what values of n, a nontrivial bisection exists.

We expect that the functions Sc,d are, unconditionally, the only symmetric
semibent functions. We have the following partial result.

Corollary 2. Let n be odd. The semibent function Sc,d : Fn2 → F2 is the only
symmetric partially bent semibent function. If there is no nontrivial bisection of
the binomial coefficients

(
n
j

)
, then Sc,d is the only symmetric semibent function

from Fn2 to F2.

Proof. Suppose that f is a symmetric partially bent semibent function with
linear space {0,v}. Then the support of Wf is {0,v}⊥ or its coset. Observe
that if v 6= 1, then there always exist two vectors u1,u2 of the same weight,
only one of which is in {0,v}⊥. This contradicts the symmetry of f . Hence
LS(f) = {0,1}, and the support of Wf consists either of the vectors of even
weight or of the vectors of odd weight. With Proposition 3, f = Sc,d.

If n permits only the trivial bisection of the binomial coefficients, then every
symmetric semibent function f has either the vectors of weight (n − 1)/2 or
the vectors of weight (n + 1)/2 in the support of its Walsh transform. With
Proposition 3, f = Sc,d. ut

Since there is only one symmetric bent Boolean function up to addition of
an affine function, there is no symmetric vectorial bent function for k > 1. As
we show next, there is essentially only one example of a symmetric generalized
bent Boolean function.

Theorem 2. There are no symmetric vectorial bent functions f : Fn2 → Fk2 for

k > 1. The only symmetric generalized bent Boolean functions f ∈ GB2
k

n , k > 1,
are the quaternary functions f(x) = (s1(x)⊕ e) + 2Sc,d(x) for some c, d, e ∈ F2

(and their natural lifts to functions in GB2k

n with only four values in their value
set in Z2k).

Proof. Let f(x) =
∑k−1
i=0 2iai(x), ai ∈ Bn, be a symmetric generalized bent

Boolean function. Hence all ai ∈ Bn are symmetric. If n is even, then all com-
ponents gc(x) = c0a0(x)⊕ c1a1(x)⊕ · · ·⊕ ck−2ak−2(x)⊕ ak−1(x) are symmetric
bent functions, i.e. gc(x) ∈ {Sc,d, c, d ∈ F2}. Consequently, we are left with the



1-dimensional space of bent functions Sc,d(x)⊕〈s1(x)⊕e〉, c, d, e ∈ F2. Note that
by Proposition 2(i), all quaternary functions (s1(x)⊕ e) + 2Sc,d(x), c, d, e ∈ F2

are in fact generalized bent.
If n is odd, then for any c = (c0, . . . , ck−3, 0), d = (d0, . . . , dk−3, 1), ci, di ∈ F2,
the components

gc = ak−1 ⊕
k−3⊕
i=0

ciai and gd = ak−1 ⊕ ak−2 ⊕
k−3⊕
i=0

diai

are symmetric semibent functions, with the additional property that for any
u ∈ Fn2 we have Wgc(u) = 0 if and only Wgd(u) 6= 0. By Proposition 3(ii),
Wgc(u) 6= 0 if wt(u) = (n− 1)/2 and Wgd(u) 6= 0 if wt(u) = (n+ 1)/2, or vice
versa. By Proposition 3(iii) then for all such c,d ∈ Fk−12 we have gc(x) = s2⊕d,
d ∈ F2, and gd = s2⊕s1⊕e, e ∈ F2, or vice versa. Therefore, the only candidate is
f(x) = (s1(x)⊕e)+2Sc,d(x) for some c, d, e ∈ F2. By Proposition 2(ii) it remains
to show that the supports of Ws2 and Ws2⊕s1 are disjoint. With Proposition 3,
the support of Ws2 , respectively, the support of Ws2⊕s1 is {0,1}⊥ or its coset.
Furthermore, exactly one of Ws2 ,Ws2⊕s1 has the vectors of weight (n− 1)/2 in
its support, which completes the proof. ut

Remark 2. The possible lifts are described explicitly by f̃(x) = A + Bs1(x) +
2k−1s2(x) for constants 0 ≤ A,B ≤ 2k − 1 if n is even, and if n is odd by
f̃(x) = C + 2k−2s1(x) + 2k−1Sc,d(x) for some constant 0 ≤ C ≤ 2k−1 − 1 and
c, d ∈ {0, 1}. Certainly those functions reduce to and are completely described
with the quaternary gbent function f : Fn2 → Z4 given as f(x) = s1(x) + 2s2(x).

We next impose balancedness to the symmetry of a generalized Boolean
function, f : Fn2 → Z2k (in fact, our result is true for any function from Fn2 into a
group of order 2k). We adopt the classical approach by embedding the problem
into one of multisection (not necessarily, bisection) of binomial coefficients. The
connection is rather simple: since the function is symmetric, its value is indepen-
dent of the weight of the input. Thus, the symmetric function f has constant
value cj for every weight j vector (of count

(
n
j

)
). Imposing balancedness, it me-

ans that each such cj will occur the same number of times, that is, we can split
the set of all binomial coefficients into 2k sets, whose sums are equal, namely
2n−k.

As mentioned above, if k = 1, this is an older and quite studied problem [6,11,12,15,16].
While there always exist trivial bisections, it is not known for what values of n,
a nontrivial bisection exists. Many papers have been written, which employ he-
avy computations to find values of n, for which we can nontrivially bisect the

binomial coefficients set
{(

n
j

)}
0≤j≤n

. Thus, it is a natural question to ask whet-

her a splitting of binomial coefficients of size other than two does exist. It was
conjectured in [21] that no such 2k-section for k > 1 existed. While this question
originates from our attempt to investigate balanced and symmetric generalized
Boolean functions, it has an interest of its own. As for the bisection, we say that
we have a 2k-section of a set of integers A (whose cardinality is divisible by 2k)



if there is a partition of cardinality 2k of the set A such that the sum on each
partition set is 1

2k

∑
x∈A x, 1 ≤ j ≤ 2k.

Theorem 3. There is no symmetric balanced function from Fn2 , n ≥ 1, to any
group of order 2k, if k ≥ 2. In particular, for k ≥ 2, there are no 2k-sections of

binomial coefficients

{(
n

j

)}
0≤j≤n

.

Proof. The result is easy to show for 1 ≤ n ≤ 10, so we assume that n ≥ 10.
Freiman [10] considered the system of equations

a11x1 + a12x2 + · · ·+ a1mxm = b1

a21x1 + a22x2 + · · ·+ a2mxm = b2,

where (0, 0) 6= (a1j , a2,j) ∈ Z2, (b1, b2) ∈ Z2, and he showed that the number of
solutions xj ∈ {0, 1} of the above system is exactly

Jb1,b2 = 2m
∫
G

∫
e−2πi(xb1+yb2)

m∏
j=1

1

2

(
1 + e2πi(xa1j+ya2j)

)
d x d y,

where G =
{

(x, y) |x, y ∈ R, |x| ≤ 1
2 , |y| ≤

1
2

}
.

Let n ≥ 10 be fixed, and we assume that there is a 2k-section, k ≥ 2 (we take
k largest with this property). We consider such a 2k-section and partition the

binomial coefficients
(
n
j

)
in 2k (disjoint) sets Ai, 1 ≤ i ≤ 2k such that

∑
j∈Ai

(
n

j

)
=

2n−k, 1 ≤ i ≤ 2k. Since we took k largest with this property (certainly, k < n),
one of the sets, without loss of generality, say A1, cannot be bisected further.
We next consider the system∑

j∈∪2k
i=2Ai

xj

(
n

j

)
+
∑
j∈A1

xj · 0 = (2k − 1)2n−k

∑
j∈∪2k

i=2Ai

xj · 0 +
∑
j∈A1

xj

(
n

j

)
= 2n−k,

and by Freiman’s result there are exactly

J(2k−1) 2n−k,2n−k = 2n+1

∫ 1/2

−1/2

∫ 1/2

−1/2
e−2π2

n−k((2k−1)x+y)

·
∏

j∈∪2k
i=2Ai

1

2

(
1 + e2πix(

n
j)
) ∏
j∈A1

1

2

(
1 + e2πiy(

n
j)
)
d x d y

= 2n+1

∫ 1/2

−1/2
e−(2

k−1)π2n−k+1x
∏

j∈∪2k
i=2Ai

1

2

(
1 + e2πix(

n
j)
)



·
∫ 1/2

−1/2
e−π2

n−k+1y
∏
j∈A1

1

2

(
1 + e2πiy(

n
j)
)

= 2n+1

∫ 1/2

−1/2

∏
j∈∪2k

i=2Ai

cos

(
πx

(
n

j

))∫ 1/2

−1/2

∏
j∈A1

cos

(
πx

(
n

j

))
,

solutions of that system. By our assumption, J(2k−1) 2n−k,2n−k ≥ 1. We let 〈, 〉
be the regular Euclidean scalar product, and observe that∏
j∈A1

cos

(
πix

(
n

j

))
=

1

2|A1|−1

∑
θ∈{−1,1}|A1|−1

cos

(
πix

〈
(1, θ), (

(
n

j

)
)j∈A1

〉)
.

Observe that

〈
(1, θ), (

(
n

j

)
)j∈A1

〉
≡
∑
j∈A1

(
n

j

)
= 2n−k ≡ 0 (mod 2), for all

θ ∈ {−1, 1}|A1|−1. Moreover, the scalar product

〈
(1, θ), (

(
n

j

)
)j∈A1

〉
6= 0, since

we assumed that A1 cannot be bisected further. Therefore, the integral∫ 1/2

−1/2

∏
j∈A1

cos

(
πx

(
n

j

))

=
1

2|A1|−1

∫ 1/2

−1/2

∑
θ∈{−1,1}|A1|−1

cos

(
πx

〈
(1, θ), (

(
n

j

)
)j∈A1

〉)

=
1

2|A1|−1

∑
θ∈{−1,1}|A1|−1

∫ 1/2

−1/2
cos

(
πx

〈
(1, θ), (

(
n

j

)
)j∈A1

〉)

=
1

2|A1|−1π
〈

(1, θ), (
(
n
j

)
)j∈A1

〉 ∑
θ∈{−1,1}|A1|−1

sin

(
πx

〈
(1, θ), (

(
n

j

)
)j∈A1

〉) ∣∣1/2
−1/2

= 0,

since

〈
(1, θ), (

(
n

j

)
)j∈A1

〉
≡ 0 (mod 2), which shows that our assumption that,

for k ≥ 2, there are 2k-sections of binomial coefficients is false. The theorem is
shown. ut

4 Avalanche features in terms of differentials

Let f ∈ GB2
k

n and a ∈ Vn, c ∈ Z2k . We let

δ(a, c) := |{x ∈ Vn |Daf(x) = c}|,

and call the quantity ∆f := max
(a,c)∈V∗n×Z2k

δf (a, c) the differential uniformity of f

(and f is a differentially ∆f -uniform function). The multiset {δf (a, c) | (a, c) ∈



Vn × Z2k} is called the differential spectrum of f . It is known that when f has
values in Vn, then ∆f ≥ 2 (in odd characteristic, ∆f can take the value 1), and
functions achieving this bound are called almost perfect nonlinear (APN). Recall
that bent functions f from a group A to a group B can be defined as functions
for which f(x+a)−f(x) is balanced for every nonzero a ∈ A, i.e. every b ∈ B is
taken on the same number |A|/|B| times. A function f from Vn to Z2k is hence
bent if and only if ∆f = 2n−k. In terms of character sum values a bent function
from Vn to Z2k is then a function for which

Hf (α,u) =
∑
x∈Vn

ζαf(x)(−1)u·x (6)

has absolute value 2n/2 for all nonzero α ∈ Z2k and u ∈ Vn. We next investigate
differential properties of generalized bent functions from Vn to Z2k , which satisfy
the weaker property that |Hf (u)| = 2n/2 for all u ∈ Vn, see Corollary 3 below.

If Vn = Fn2 , then we say that f ∈ GB2
k

n satisfies the (generalized) propagation
criterion of order ` (1 ≤ ` ≤ n), denoted by gPC(`), if and only if the auto-
correlation Cf (v) =

∑
x∈Vn ζ

f(x)−f(x⊕v) = 0, for all vectors v ∈ Fn2 of weight
0 < wt(v) ≤ `. If ` = 1, we say that f satisfies the (generalized) strict avalanche
criterion (gSAC). With the standard calculations we see that f is gbent if and
only if Cf (v) = 0 for all v (in this case we do not require that Vn = Fn2 ).

Theorem 4. Let f ∈ GB2
k

n , and A
(w)
j = {x|f(x ⊕ w) − f(x) = j}. Then f is

gPC(`) if and only if

|A(0)
0 | = 2n, |A(0)

j | = 0, |A(w)
j | = |A

(w)

j+2k−1 |, for 0 ≤ j ≤ 2k−1− 1, 1 ≤ wt(w) ≤ `.

Proof. First note that unconditionally we always have |A(0)
0 | = 2n, |A(0)

j | = 0.
For v ∈ Vn, v 6= 0, with the notations in the statement of the theorem and
ζ̄ = ζ−1 we have

Cf (v) =
∑
x∈Vn

ζf(x)−f(x⊕v) =

2k−1∑
j=0

|A(v)
j |ζ̄

j =

2k−1−1∑
j=0

(|A(v)
j | − |A

(v)

j+2k−1 |)ζ̄j .

Since the set {ζ̄j : 0 ≤ j ≤ 2k−1 − 1} is a basis of Q(ζ), hence is linearly

independent, we have Cf (v) = 0 if and only if |A(v)
j | = |A(v)

j+2k−1 | for 0 ≤ j ≤
2k−1 − 1. ut

Corollary 3. Let f ∈ GB2
k

n . Then f is gbent if and only if

|A(0)
0 | = 2n, |A(0)

j | = 0, |A(w)
j | = |A

(w)

j+2k−1 |, for all 0 ≤ j ≤ 2k−1 − 1,w 6= 0.

Recall that a Boolean function g : Vn → F2 is called partially bent if g(x ⊕
a)⊕ g(x) is either balanced or constant for all a ∈ Vn. Partially bent functions
from Vn to F2 are always s-plateaued, where s is the dimension of the linear



space of g. In an analog way we can define (generalized) partially bent functions
from Vn to Z2k as functions f for which f(x ⊕ a) − f(x) is either balanced or
constant for all a ∈ Vn. With the standard proof for partially bent functions
one can show that generalized partially bent functions f : Vn → Z2k as defined
above, are plateaued with respect to their transform Hf (α, u) of (6).

In Theorem 4 we characterized gbent functions via their differential pro-
perties. With this characterization the following definition of a partially gbent

function is natural. As in Theorem 4, let A
(w)
j = {x|f(x ⊕ w) − f(x) = j}. A

function f ∈ GB2
k

n is called partially gbent, if for all w ∈ Vn we either have

|A(w)
j | = |A

(w)

j+2k−1 | for all 0 ≤ j ≤ 2k−1 − 1, or the derivative f(x⊕w)− f(x) is
constant.

Proposition 4. A partially gbent function f ∈ GB2
k

n is s-plateaued, where s is
the dimension of the linear space of f .

Proof. Since Hf+c(u) = ζcHf (u), without loss of generality we can suppose that
f(0) = 0. For u ∈ Vn we have

Hf (u)Hf (u) =
∑
z∈Vn

ζf(z)(−1)u·z
∑
x∈Vn

ζ−f(x)(−1)u·x

=
∑

w∈Vn

ζ−f(w)(−1)u·w
∑
x∈Vn

ζf(x⊕w)−f(x)+f(w).

Observe that f(x ⊕ w) − f(x) + f(w) = 0 if w is a linear structure of f (we
use that f(0) = 0). If w is not a linear structure, then by our assumption∑

x∈Vn ζ
f(x⊕w)−f(x)+f(w) = ζf(w)

∑
x∈Vn ζ

f(x⊕w)−f(x) = 0. Hence putting Λ =

LS2k(f), Hf (u)Hf (u) = 2n
∑
w∈Λ

ζ−f(w)(−1)u·w. Let z be any element of Sf =

{x ∈ Vn|Hf (x) 6= 0}. Then by Theorem 1 we have ζf(w) = (−1)z·w for every

w ∈ Λ. Therefore Hf (u)Hf (u) = 2n
∑
w∈Λ

(−1)(z⊕u)·w, (independently from the

choice of z ∈ Sf ). Consequently, if z ⊕ u ∈ Λ⊥, then |Hf (u)|2 = 2n+s, where
s = dim(Λ), otherwise Hf (u) = 0. ut

Remark 3. Observing that Hf (u) only depends on whether z ⊕ u ∈ Λ⊥, inde-
pendent from the choice of z ∈ Sf , we infer that Sf is a coset of Λ⊥ (we also
use that by Parseval’s identity, |Sf | = 2n−s). This coincides with the situation
for conventional partially bent functions.

Similar as for conventional partially bent functions, cf. [4,5], we have the follo-
wing corollary for partially gbent functions.

Corollary 4. Let Λ = LS2k(f) be the linear space of the function f ∈ GB2
k

n .
Then f is partially gbent (partially bent) if and only if for any complement Λcomp

of Λ in Vn, the function f |Λcomp is gbent (bent).



Proof. With Daf(x) = f(x⊕ a)− f(x),

HDaf (0) =
∑
x∈Vn

ζf(x⊕a)−f(x) =
∑
y∈Λ

∑
z∈Λcomp

ζf(y⊕z⊕a)−f(y⊕z).

Using that f(x⊕y)−f(x)+f(y) = 0 if y ∈ Λ, we see that f(y⊕z⊕a)−f(y⊕z) =
f(z⊕ a)− f(z), hence

HDaf (0) =
∑
y∈Λ

∑
z∈Λcomp

ζf(z⊕a)−f(z) = |Λ|
∑

z∈Λcomp
ζf(z⊕a)−f(z). (7)

First suppose that f is partially gbent. Then for a 6∈ Λ we have HDaf (0) =∑
x∈Vn ζ

f(x⊕a)−f(x) = 0, and hence with (7),
∑

z∈Λcomp ζ
f(z⊕a)−f(z) = 0. Con-

sequently, for Ã
(a)
j = {z ∈ Λcomp|f(z⊕a)−f(z) = j} we have |Ã(a)

j | = |Ã
(a)

j+2k−1 |
for all 0 ≤ j ≤ 2k−1 − 1 and all nonzero a ∈ Λcomp. By Theorem 4, f restricted
to Λcomp is gbent.

Conversely let f |Λcomp be gbent for any complement Λcomp of Λ. Let a 6∈ Λ
and let Λcomp be a complement of Λ containing a. By assumption, with Theorem
4 we have

∑
z∈Λcomp ζ

f(z⊕a)−f(z) = 0, hence by Equation (7), HDaf (0) = 0.

Therefore |A(a)
j | = |A(a)

j+2k−1 | for all 0 ≤ j ≤ 2k−1 − 1, and f is partially gbent
by definition. ut
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