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Abstract. Linear codes of length 2 over the integers modulo some integer
q that can correct single errors of limited size are considered. A code can
be determined by a check pair of integers. The errors e considered are in
the range —p < e < A, such a code can only exist for g sufficiently large.
The main content of this note is to make this statement precise, that is, to
determine "¢ sufficiently large” in terms of the integers —p and .
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1 Introduction

We consider linear codes that can correct unbalanced errors i.e. a symbol a over the
alphabet Z; = {0,1,...,¢ — 1} may be modified during transmission into another
symbol b € Z,, where —pp < b—a < X, and > 0 and A > 1 are integers, see [10].
Without loss of generality, we may assume that u < A (see [11]).

Codes for p = 0 have been considered e.g. in [3], [4], [7], [8]. Codes for p = A
have been considered e.g. in [3], [5], [9], [10]. Codes for the general unbalanced case
have been considered in [1], [10], [11]. A basic building block for many of these code
constructions are sets which we have called B[—u, A](¢) sets. They correspond to
check vectors. In this note, we consider such sets of size two, corresponding to codes
of length two.

We let gr,(—p, A) be the smallest integer ¢ such that there exists a linear code
in Z7 that can correct a single error from [—pu, A].

In [6] we gave some observations and conjectures based on the values of gz, (—p, \)
for small values of p and .

In Section 2 we give some some definitions and known results from [6]. In par-
ticular, we quote some upper bounds on qr(—u, ) for p < A < 2pu.

In Section 3 we give some upper bounds on g (—p, A) for A > 2u. This is the
main result of this paper.

2 Definitions and known results

Let g be a positive integer. We consider the following channel:
Our alphabet is Z,. Let A and p be integers, where 0 < p < A < g — p.
Let

[_/-1’7)‘] :{_M7_M+177A_17A}
and
[, A" ={—p,—p+1,...,—-1}U{1,2,...,A}.

An element a € Z, may be changed into a + e, where e € [—p, A].
Let 0 < p < X be integers. A B[—pu, A](q) set (of size 2) is a set S = {a,b} such
that all us, where u € [—pu, A]* and s € S, are distinct and non-zero.



The corresponding linear code of length 2 is
Cs ={(z,y) € Zg | za + yb = 0}.
The size of the code is
|Cs| =dgq where d=ged(a,b,q).

The set B[—p, Al(g) is the set of syndroms of Cs. Hence the code can correct a
single error from [—pu, A].

A number of constructions of B[—pu, A](q) sets are known, in particular for y =0
and for p = A, see [1]-[10].

We can reformulate the definition of B[—u, A](¢) sets of size 2 by specifying the
conditions to check.

Definition 1. A set B = {a,b} CZ, is a B[—u, A(q) set if and only if

za £ 0 (mod q) for all x € [—pu, A", (

xa Z ya (mod q) for all x,y € [—u, \]*,x <y, (
xb# 0 (mod q) for all x € [—p, A", (3

xb Z yb (mod q) for all z,y € [—p, A",z < y, (

and xa Z yb (mod q) for all v,y € [—u, A]*. (

(

set of size two exists.

In [8] we showed that ¢qr(0,A) = 2A + 1 and a corresponding B[0, A](¢) set is
{1,q — 1}. In [9], we showed that qr(—A,A\) = (A + 1)2 + 1 and a corresponding
B[—\, A\](q) set is {1,A 4+ 1}.

Let

P =AM+ 12 = (A =p)® = (u+1)2A + 1 - p).

We have shown the following results:

Theorem 1. a) [6, Theorem 1]: qr.(—p, A) > p—,.x for all p, A.
b) [6, Theorem 2]: qr.(—p, A) = p—px if ged(A+ 1, A —p) = 1.

We have computed g7, (—p, A) by complete search for 0 < p < A < 20. For these
values, we gave the following observations in [6]:

1. Ifged(A+1,A—p) > 1and p < A < 2p, then gr.(—p, A) =p_pr + A — L.
2. If ged(A+1,A—p) > 1 and A > 2p, then gr(—p, A) =p_pr+p+ 1.

Possibly these expressions are true for all p, A.
Upper bounds are obtained by explicit constructions. For p+ 1 < A < 2u we
gave the following result.

Theorem 2. [6, Theorem 3]: For all u,\ such that p+ 1 < XA < 2u, we have
ar(=p, A) < p—pr+A—p. Ifged(A+1,A—p) > 1, then one Bl—p, \|(p—pr+A—p)
set is {2A — pu, 22 — p+ 1},

The goal of the following paper is to give a similar result for A > 2u.

Remark. We have a related channel for the integers: any a € [0,q — 1] can be
changed to b € [0,q — 1 where — < b — a < A. Error in flash memories can be
modeled by this channel, see e.g. [2], [10]. We see that codes correcting single errors
over the channel defined over Z, in particular corrects errors from [0,¢ — 1] in the
corresponding channels over the integers.



3 Upper bounds on qr(—p, A) for A > 2pu.

The main result in the present paper is the following upper bound:

Theorem 3. If u > 1 and A > 2u, then we have

aL(—pA) Sp—pr+p+1=(p+1)2A+2—p).

In [6, Theorem 4] we proved this in a special case, namely when A+ 1 is multiple
of p+ 1. In that case, {1,2A + 1 — u} is a Blu, AJ((z + 1)(2A 4+ 2 — 1)) set.

To prove Theorem 3, we treat y even and u odd separately. For both cases, we
let

t=2\+2—pand g= (p+ 1)t

Lemma 1. If p is even, A > 2u, a =2\ + 1 — p, and b = a + 2, then {a,b} is a
Blu, A(q) set for ¢ = (n+1)(2A+2 — p).
Proof: We check (1)-(5) in Definition 1. We have

a=t—land b=1t+ 1.
Hence, we clearly get the following relations:

If z€[—p,—1], then b (mod t) =t + = and za (mod t) = —zx.
If ze[1,], then b (mod t) =z and za (mod t) =t — z.

We see that xza (mod t) # 0. In particular, za (mod ¢) # 0. Hence (1) is satisfied.

Since A + p < t, we see that if z,y € [—p, \] and = < y, then za # ya (mod t).
In particular, za # ya (mod q), that is, (2) is satisfied.

Similarly, (3) and (4) are satisfied.

Finally, suppose that z,y € [—u, A] and yb = za (mod ¢). Then y = —z (mod ¢)
and so y = —x and so

T,y € [—p,p]". (6)
Hence
2t = x(a+b) = xa —yb =0 (mod (u + 1)t)
and so
2z =0 (mod (u+ 1)).

Since p + 1 is odd, this implies that = 0 (mod (u + 1)), but this contradicts (6).
Hence, (5) is satisfied.
QED

Ezample 1. Let p = 2 and A = 5. We have ged(A + 1, A\ — p) = 3. Consider the
construction in Lemma 1. We have a =9, b = 11, ¢ = 30. The code is
C = {(x,y) €73, | 92 + 11y = 0} = {(z,21x) | x € Z30}.

The simplest corresponding encoding is, of course, z — (z,21z).
For (x,y) € Z%,, the corresponding syndrom is 9z + 11y. For (z,y) € C and
e € [-2,5], the syndrom corresponding to the error (e, 0) is

9(x+e)+ 11y =9z + 11y + 9¢ = 9e

and the syndrom corresponding to the error (0,¢e) is 1le. We give the values the
syndroms in the following table.

el-2-11 2 3 4 5
9e[ 12 21 91827 615
11le| 8 191122 31425

They are all distinct, that is, the set {9,11} is indeed a B[—2,5](30) set.



For 11 odd we find a similar, but more complicated, construction.

Lemma 2. If p = 2v+1 is odd, A > 2, a = pX — 0 where 0 = 202, and b= a +1,
then {a,b} is a Blu, A|(q) set.

Proof: First we note that

20 =2\ — (u—1)2 = p(2A — p+2) =1 = pt — 1, (7)
2b=2a+2=pt+1. (8)
Further
a+b=2a+1=pt=0 (mod t). (9)
Hence,

2a=t—-1=224+2—p—-1=224+2-2v —-1—-1=2(A—v) (mod t)
and so, since t is odd, we get
a=\—v (mod t). (10)

Let ¢ = |A/2]. From (7) and (10) we get the following relations:

If x € [—v,—1], then 2za (mod t) = —x.
Ifx € [-v—1,-1], then (2x 4+ 1)a (mod t) =X —v —=z.
If x € [1, 4], then 2za (mod t) =t—ux.
If z € 0,4, then (2z+ 1)a (mod t) =\ —v —z.

Hence, (1) is satisfied.

Further,
{2za (mod t) | z € [-v,—1]} = [1,v]
{2z +1)a (mod t) | z € [0, 4]} =A—v—-0)X—V
{@2x+1)a (mod t) |z e[-v—1,-1}=A—-v+1,A+1]
{2za (mod t) | z € [1,4]} =[t—4{t—1]

We have

t—0)—-A+)=A—v—0)—v=X—{—2v,

and

20 =0 —2v)=20A—-20—-2(u—1)
=A-20+(A—2u—-1)+3
>1+0+3>0.

Hence, we see that if 2,y € [—pu,A] and < y, then za # ya (mod t). In
particular, xa # ya (mod ¢). Hence (2) is satisfied.

From (9) we get b = —a (mod t). Hence, (3) is satisfied. Further we see that if
z,y € [-p,A\] and = < y, then xb # yb (mod t). In particular, b Z yb (mod q).
Hence (4) is satisfied.

Finally, if 2,y € [—u,A] and za = yb (mod g), then za = yb = —ya (mod t).
Since t is odd, we have

ged(a, t) = ged(2a,t) = ged(2ut — 1,t) = 1.
Hence = —y (mod t) and so & = —y. Therefore,

2.y € [~ppl". (11)



Further, we get za = —xb (mod ¢) and so z(a + b) = 0 (mod ¢). Hence
zpt =0 (mod (u+ 1)t).

Therefore,

zp =0 (mod p+ 1)

and so

=0 (mod p+1)

which is impossible by (11). Hence (5) is satisfied.
QED

Ezample 2. Let p = 1 and A = 3. We have ged(A 4+ 1, A — ) = 2. Consider the
construction in Lemma 2. Then v =0, 0 =0, a = 3, b =4, ¢ = 14. The code is

C ={(z,y) € Z3, | 3z + 4y = 0}
2a,2a+78) | a € 10,6], 8 € [0, 1]}

={(
={(0,0),(2,2), (4,4), (6,6), (8,8), (10,10), (12, 12)}
u{(0,7),(2,9),(4,11),(6,13),(8,1),(10,3), (12,5)}

We note that there is no vy such that C' = {(z,vx) | = € [0,13]} in this case.
The simplest corresponding encoding is 2a + 8 — (2a, 2 + 7).
For (z,y) € Z3,, the corresponding syndrom is 3x + 4y. For (z,y) € C and
€ [-1, 3], the syndrom corresponding to the error (e,0) is 3e and the syndrom
corresponding to the error (0,e) is 4e. We give the values of the syndroms in the
following table.

e[-112 3
3¢/ 1136 9
4e[ 104812

As an example of decoding, suppose that (6,11) received, The corresponding syn-
drom is 3-6+4-11 =6 (mod 14). From the table we see that is corresponds to the
error (2,0) and so the corrected codeword is (6,11) — (2.0) = (4,11). Hence o = 2
and S =1 and (4,11) is the encoding of 2-2+ 1 = 5.

We give one more example where the encoding is more complicated.

Ezample 3. Let u = 5 and X\ = 14. We have ged(A + 1, A — ) = 3. Consider the
construction in Lemma 2. Then v =2, § =8, a = 62, b = 63, ¢ = 150. We see that
if (z,y) is a codeword, then £ = 0 (mod 3) and y is even. Let © = 3x; and y = 2y;.
Then

62321 +63-2y, =0 (mod 150)

and so
3lzy 4+ 21y; =0  (mod 25)

which implies that y; = 1427 (mod 25). Hence the code is
C = {(6a + 753, 28a + 507) | a € [0,24], 8 € [0,1],7 € [0,2]}

The simplest corresponding encoding is 6 + 38 + v — (6 + 755, 28 + 507).
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