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Abstract. Linear codes of length 2 over the integers modulo some integer
q that can correct single errors of limited size are considered. A code can
be determined by a check pair of integers. The errors e considered are in
the range �µ  e  �, such a code can only exist for q su�ciently large.
The main content of this note is to make this statement precise, that is, to
determine ”q su�ciently large” in terms of the integers �µ and �.
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1 Introduction

We consider linear codes that can correct unbalanced errors i.e. a symbol a over the
alphabet Zq = {0, 1, . . . , q � 1} may be modified during transmission into another
symbol b 2 Zq, where �µ  b � a  �, and µ � 0 and � � 1 are integers, see [10].
Without loss of generality, we may assume that µ  � (see [11]).

Codes for µ = 0 have been considered e.g. in [3], [4], [7], [8]. Codes for µ = �

have been considered e.g. in [3], [5], [9], [10]. Codes for the general unbalanced case
have been considered in [1], [10], [11]. A basic building block for many of these code
constructions are sets which we have called B[�µ,�](q) sets. They correspond to
check vectors. In this note, we consider such sets of size two, corresponding to codes
of length two.

We let qL(�µ,�) be the smallest integer q such that there exists a linear code
in Z2

q that can correct a single error from [�µ,�].
In [6] we gave some observations and conjectures based on the values of qL(�µ,�)

for small values of µ and �.
In Section 2 we give some some definitions and known results from [6]. In par-

ticular, we quote some upper bounds on qL(�µ,�) for µ < � < 2µ.
In Section 3 we give some upper bounds on qL(�µ,�) for � > 2µ. This is the

main result of this paper.

2 Definitions and known results

Let q be a positive integer. We consider the following channel:
Our alphabet is Zq. Let � and µ be integers, where 0  µ  � < q � µ.
Let

[�µ,�] = {�µ,�µ+ 1, . . . ,�� 1,�}

and
[�µ,�]⇤ = {�µ,�µ+ 1, . . . ,�1} [ {1, 2, . . . ,�}.

An element a 2 Zq may be changed into a+ e, where e 2 [�µ,�].
Let 0  µ  � be integers. A B[�µ,�](q) set (of size 2) is a set S = {a, b} such

that all us, where u 2 [�µ,�]⇤ and s 2 S, are distinct and non-zero.



The corresponding linear code of length 2 is

CS = {(x, y) 2 Z2
q | xa+ yb = 0}.

The size of the code is

|CS | = dq where d = gcd(a, b, q).

The set B[�µ,�](q) is the set of syndroms of CS . Hence the code can correct a
single error from [�µ,�].

A number of constructions of B[�µ,�](q) sets are known, in particular for µ = 0
and for µ = �, see [1]-[10].

We can reformulate the definition of B[�µ,�](q) sets of size 2 by specifying the
conditions to check.

Definition 1. A set B = {a, b} ✓ Zq is a B[�µ,�](q) set if and only if

xa 6⌘ 0 (mod q) for all x 2 [�µ,�]⇤, (1)

xa 6⌘ ya (mod q) for all x, y 2 [�µ,�]⇤, x < y, (2)

xb 6⌘ 0 (mod q) for all x 2 [�µ,�]⇤, (3)

xb 6⌘ yb (mod q) for all x, y 2 [�µ,�]⇤, x < y, (4)

and xa 6⌘ yb (mod q) for all x, y 2 [�µ,�]⇤. (5)

Definition 2. Given µ and �, qL(�µ,�) is the smallest q for which a B[�µ,�](q)
set of size two exists.

In [8] we showed that qL(0,�) = 2� + 1 and a corresponding B[0,�](q) set is
{1, q � 1}. In [9], we showed that qL(��,�) = (� + 1)2 + 1 and a corresponding
B[��,�](q) set is {1,�+ 1}.

Let
p�µ,� = (�+ 1)2 � (�� µ)2 = (µ+ 1)(2�+ 1� µ).

We have shown the following results:

Theorem 1. a) [6, Theorem 1]: qL(�µ,�) � p�µ,� for all µ,�.

b) [6, Theorem 2]: qL(�µ,�) = p�µ,� if gcd(�+ 1,�� µ) = 1.

We have computed qL(�µ,�) by complete search for 0  µ < �  20. For these
values, we gave the following observations in [6]:

1. If gcd(�+ 1,�� µ) > 1 and µ < � < 2µ, then qL(�µ,�) = p�µ,� + �� µ.
2. If gcd(�+ 1,�� µ) > 1 and � > 2µ, then qL(�µ,�) = p�µ,� + µ+ 1.

Possibly these expressions are true for all µ,�.
Upper bounds are obtained by explicit constructions. For µ + 1 < � < 2µ we

gave the following result.

Theorem 2. [6, Theorem 3]: For all µ,� such that µ + 1 < � < 2µ, we have

qL(�µ,�)  p�µ,�+��µ. If gcd(�+1,��µ) > 1, then one B[�µ,�](p�µ,�+��µ)
set is {2�� µ, 2�� µ+ 1}.

The goal of the following paper is to give a similar result for � > 2µ.

Remark. We have a related channel for the integers: any a 2 [0, q � 1] can be
changed to b 2 [0, q � 1 where �µ  b � a  �. Error in flash memories can be
modeled by this channel, see e.g. [2], [10]. We see that codes correcting single errors
over the channel defined over Zq in particular corrects errors from [0, q � 1] in the
corresponding channels over the integers.



3 Upper bounds on qL(�µ,�) for � > 2µ.

The main result in the present paper is the following upper bound:

Theorem 3. If µ � 1 and � > 2µ, then we have

qL(�µ,�)  p�µ,� + µ+ 1 = (µ+ 1)(2�+ 2� µ).

In [6, Theorem 4] we proved this in a special case, namely when �+1 is multiple
of µ+ 1. In that case, {1, 2�+ 1� µ} is a B[µ,�]((µ+ 1)(2�+ 2� µ)) set.

To prove Theorem 3, we treat µ even and µ odd separately. For both cases, we
let

t = 2�+ 2� µ and q = (µ+ 1)t.

Lemma 1. If µ is even, � > 2µ, a = 2� + 1 � µ, and b = a + 2, then {a, b} is a

B[µ,�](q) set for q = (µ+ 1)(2�+ 2� µ).

Proof: We check (1)-(5) in Definition 1. We have

a = t� 1 and b = t+ 1.

Hence, we clearly get the following relations:

If x 2 [�µ,�1], then xb (mod t) = t+ x and xa (mod t) = �x.

If x 2 [1,�], then xb (mod t) = x and xa (mod t) = t� x.

We see that xa (mod t) 6= 0. In particular, xa (mod q) 6= 0. Hence (1) is satisfied.
Since �+ µ < t, we see that if x, y 2 [�µ,�] and x < y, then xa 6⌘ ya (mod t).

In particular, xa 6⌘ ya (mod q), that is, (2) is satisfied.
Similarly, (3) and (4) are satisfied.
Finally, suppose that x, y 2 [�µ,�] and yb ⌘ xa (mod q). Then y ⌘ �x (mod t)

and so y = �x and so
x, y 2 [�µ, µ]⇤. (6)

Hence
2xt = x(a+ b) = xa� yb ⌘ 0 (mod (µ+ 1)t)

and so
2x ⌘ 0 (mod (µ+ 1)).

Since µ+ 1 is odd, this implies that x ⌘ 0 (mod (µ+ 1)), but this contradicts (6).
Hence, (5) is satisfied.
QED

Example 1. Let µ = 2 and � = 5. We have gcd(� + 1,� � µ) = 3. Consider the
construction in Lemma 1. We have a = 9, b = 11, q = 30. The code is

C = {(x, y) 2 Z2
30 | 9x+ 11y = 0} = {(x, 21x) | x 2 Z30}.

The simplest corresponding encoding is, of course, z 7! (z, 21z).
For (x, y) 2 Z2

30, the corresponding syndrom is 9x + 11y. For (x, y) 2 C and
e 2 [�2, 5], the syndrom corresponding to the error (e, 0) is

9(x+ e) + 11y = 9x+ 11y + 9e = 9e

and the syndrom corresponding to the error (0, e) is 11e. We give the values the
syndroms in the following table.

e �2 �1 1 2 3 4 5
9e 12 21 9 18 27 6 15

11e 8 19 11 22 3 14 25

They are all distinct, that is, the set {9, 11} is indeed a B[�2, 5](30) set.



For µ odd we find a similar, but more complicated, construction.

Lemma 2. If µ = 2⌫+1 is odd, � > 2µ, a = µ�� ✓ where ✓ = 2⌫2, and b = a+1,
then {a, b} is a B[µ,�](q) set.

Proof: First we note that

2a = 2µ�� (µ� 1)2 = µ(2�� µ+ 2)� 1 = µt� 1, (7)

2b = 2a+ 2 = µt+ 1. (8)

Further
a+ b = 2a+ 1 = µt ⌘ 0 (mod t). (9)

Hence,

2a ⌘ t� 1 = 2�+ 2� µ� 1 = 2�+ 2� 2⌫ � 1� 1 = 2(�� ⌫) (mod t)

and so, since t is odd, we get

a ⌘ �� ⌫ (mod t). (10)

Let ` = b�/2c. From (7) and (10) we get the following relations:

If x 2 [�⌫,�1], then 2xa (mod t) = �x.

If x 2 [�⌫ � 1,�1], then (2x+ 1)a (mod t) = �� ⌫ � x.

If x 2 [1, `], then 2xa (mod t) = t� x.

If x 2 [0, `], then (2x+ 1)a (mod t) = �� ⌫ � x.

Hence, (1) is satisfied.
Further,

{2xa (mod t) | x 2 [�⌫,�1]} = [1, ⌫]
{(2x+ 1)a (mod t) | x 2 [0, `]} = [�� ⌫ � `,�� ⌫]
{(2x+ 1)a (mod t) | x 2 [�⌫ � 1,�1]} = [�� ⌫ + 1,�+ 1]
{2xa (mod t) | x 2 [1, `]} = [t� `, t� 1]

We have
(t� `)� (�+ 1) = (�� ⌫ � `)� ⌫ = �� `� 2⌫,

and

2(�� `� 2⌫) = 2�� 2`� 2(µ� 1)

= (�� 2`) + (�� 2µ� 1) + 3

� 1 + 0 + 3 > 0.

Hence, we see that if x, y 2 [�µ,�] and x < y, then xa 6⌘ ya (mod t). In
particular, xa 6⌘ ya (mod q). Hence (2) is satisfied.

From (9) we get b ⌘ �a (mod t). Hence, (3) is satisfied. Further we see that if
x, y 2 [�µ,�] and x < y, then xb 6⌘ yb (mod t). In particular, xb 6⌘ yb (mod q).
Hence (4) is satisfied.

Finally, if x, y 2 [�µ,�] and xa ⌘ yb (mod q), then xa ⌘ yb ⌘ �ya (mod t).
Since t is odd, we have

gcd(a, t) = gcd(2a, t) = gcd(2µt� 1, t) = 1.

Hence x ⌘ �y (mod t) and so x = �y. Therefore,

x, y 2 [�µ, µ]⇤. (11)



Further, we get xa ⌘ �xb (mod q) and so x(a+ b) ⌘ 0 (mod q). Hence

xµt ⌘ 0 (mod (µ+ 1)t).

Therefore,

xµ ⌘ 0 (mod µ+ 1)

and so

x ⌘ 0 (mod µ+ 1)

which is impossible by (11). Hence (5) is satisfied.
QED

Example 2. Let µ = 1 and � = 3. We have gcd(� + 1,� � µ) = 2. Consider the
construction in Lemma 2. Then ⌫ = 0, ✓ = 0, a = 3, b = 4, q = 14. The code is

C ={(x, y) 2 Z2
14 | 3x+ 4y = 0}

={(2↵, 2↵+ 7�) | ↵ 2 [0, 6],� 2 [0, 1]}
={(0, 0), (2, 2), (4, 4), (6, 6), (8, 8), (10, 10), (12, 12)}
[ {(0, 7), (2, 9), (4, 11), (6, 13), (8, 1), (10, 3), (12, 5)}

We note that there is no � such that C = {(x, �x) | x 2 [0, 13]} in this case.
The simplest corresponding encoding is 2↵+ � 7! (2↵, 2↵+ 7�).
For (x, y) 2 Z2

14, the corresponding syndrom is 3x + 4y. For (x, y) 2 C and
e 2 [�1, 3], the syndrom corresponding to the error (e, 0) is 3e and the syndrom
corresponding to the error (0, e) is 4e. We give the values of the syndroms in the
following table.

e �1 1 2 3
3e 11 3 6 9
4e 10 4 8 12

As an example of decoding, suppose that (6, 11) received, The corresponding syn-
drom is 3 · 6+4 · 11 ⌘ 6 (mod 14). From the table we see that is corresponds to the
error (2, 0) and so the corrected codeword is (6, 11) � (2.0) = (4, 11). Hence ↵ = 2
and � = 1 and (4, 11) is the encoding of 2 · 2 + 1 = 5.

We give one more example where the encoding is more complicated.

Example 3. Let µ = 5 and � = 14. We have gcd(� + 1,� � µ) = 3. Consider the
construction in Lemma 2. Then ⌫ = 2, ✓ = 8, a = 62, b = 63, q = 150. We see that
if (x, y) is a codeword, then x ⌘ 0 (mod 3) and y is even. Let x = 3x1 and y = 2y1.
Then

62 · 3x1 + 63 · 2y1 ⌘ 0 (mod 150)

and so

31x1 + 21y1 ⌘ 0 (mod 25)

which implies that y1 ⌘ 14x1 (mod 25). Hence the code is

C = {(6↵+ 75�, 28↵+ 50�) | ↵ 2 [0, 24],� 2 [0, 1], � 2 [0, 2]}

The simplest corresponding encoding is 6↵+ 3� + � 7! (6↵+ 75�, 28↵+ 50�).
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