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Abstract. In this paper we provide a complete characterisation of tran-

sitive fractional jumps by showing that they can only arise from transitive

projective automorphisms. Furthermore, we prove that such construction

is feasible for arbitrarily large dimension by exhibiting an infinite class of

projectively primitive polynomials whose companion matrix can be used

to define a full orbit sequence over an affine space.

1 Introduction

The study of dynamical systems over finite fields have a long history (see for

example [2, 4, 5, 6, 9, 12, 13, 18]) and is an interesting and still hot topic (see

for example [7, 8, 10, 14, 15, 16, 17, 19]), both for its number theoretical impact

in finite fields theory, and for its practical applications, in particular for random

number generation.

Let q be a prime power, let Fq denote the finite field with q elements, and let

m be a positive integer. One of the most interesting questions for applications

consists of constructing sequences over the m-dimensional affine space over Fq
defined by iterations of rational maps f : Fmq → Fmq satisfying the following

conditions:

1. The period of the recursive sequence {fk(0)}k∈N they define is “long”.

2. Their iterations as rational maps have “low degree growth”.

? The second author would like to thank the Swiss National Science Foundation grant

number 171248.
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The motivation for (1) is rather clear: since we generally want to use these

sequences for pseudorandom number generation, we do not want to revisit an

element twice too soon, or otherwise the entire sequence will repeat. The moti-

vation for (2) is a little more subtle and comes from the uniformity conditions

we want the sequence to satisfy (for additional information on this see [16]).

In [1] we introduced the theory of fractional jumps to address this problem

by showing a natural way to build full orbit sequences from projective auto-

morphisms, recovering as a particular case the construction of the Inversive

Congruential Generator.

In this paper we complete the theory of fractional jumps by both proving

the uniqueness of the construction, i.e. transitive fractional jumps can only arise

from transitive projective automorphisms (except from a couple of degenerate

cases which we entirely classify), and by providing an explicit infinite class of

projectively primitive polynomials, see definition [1, Definition 3.1], whose com-

panion matrix can be used to define a full orbit sequence over Fp−1p , for p a

prime. For this family of fractional jumps, which we call Artin-Schreier frac-

tional jumps, we show that the computation of the (k+ 1)-th affine point of the

full orbit sequence they define, given the k-th one, is as expensive as reading out

a look-up table once for each entry.

This latter construction entirely addresses points (1) and (2) above, since the

corresponding sequences have full orbit (they cover the entire affine space) and

they have zero degree growth. The main technique we use is the fractional jump

construction provided in [1].

1.1 Notation

We denote by N the set of natural numbers, and by Z the set of integers. Given

a ∈ Z, we let Z≥a denote the set of integers k ∈ Z such that k ≥ a.

Given a commutative ring with unity R, we let R∗ be the (multiplicative)

group of invertible elements in R.

For a prime power q, we denote by Fq the finite field of cardinality q. For m ∈
N, we denote the m-dimensional affine space Fmq by Am, and the m-dimensional

projective space over Fq by Pm. More generally, for any vector space V over Fq
we denote by PV the projectivisation of V . Also, we denote by Fq[x1, . . . , xm]

the ring of polynomials in m variables with coefficients in Fq.
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For m ∈ N, let us denote by GLm(Fq) the general linear group over Fq, that

is the group of m×m invertible matrices with entries in Fq. Also, we denote by

PGLm(Fq) the group of automorphisms of Pm−1. Recall that PGLm(Fq) can be

identified with the quotient group GLm(Fq)/F∗qIdm, where F∗qId is the subgroup

of F∗q-multiples of the identity matrix Idm. For M ∈ GLm(Fq), we denote by [M ]

its class in PGLm(Fq).

We say that a polynomial χ(T ) ∈ Fq[T ] of degree degχ(T ) = d is projectively

primitive if it is irreducible and if given any root α in Fqd ∼= Fq[T ]/(χ(T )) the

class α of α in the quotient group G = F∗qd/F
∗
q generates G.

Let X be a set, and let G be a group acting on it. For any x ∈ X we denote

by OG(x) the orbit of x with respect to the action of G on X. Given a bijective

map f : X → X, for any x ∈ X we set Of (x) = O〈f〉(x), where 〈f〉 denotes the

cyclic subgroup of the group of maps from X to itself generated by f , and we

define of (x) = |Of (x)|. We say that a bijective map f : X → X acts transitively

on X, or simply that it is transitive, if for any x, y ∈ X there exists k ∈ Z such

that y = fk(x). Equivalently, f acts transitively on X if and only if for any

x0 ∈ X, the f -orbit of x0 has size of (x0) = |X|. Finally, we say that a sequence

{xk}k∈N in X has full orbit if {xk : k ∈ N} = X.

2 Transitive fractional jumps

For the sake of completeness, we recall the definition of fractional jump of a

projective automorphism, as introduced in [1].

Fix the standard projective coordinates X0, . . . , Xn on Pn, and fix the canon-

ical decomposition

Pn = U ∪H,

where

U = {[X0 : . . . : Xn] ∈ Pn : Xn 6= 0} ,

H = {[X0 : . . . : Xn] ∈ Pn : Xn = 0} .

Fix also the isomorphism

π : An ∼−→ U, (x1, . . . , xn) 7→ [x1 : . . . : xn : 1].
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Let now Ψ be an automorphism of Pn. For P ∈ U , we define the fractional

jump index of Ψ at P as

JP = min
{
k ∈ Z≥1 : Ψk(P ) ∈ U

}
.

The fractional jump of Ψ is then defined as the map

ψ : An → An, x 7→ π−1ΨJπ(x)π(x).

Essentially, the map ψ is defined on a point x ∈ An as follows: we firstly send

x in Pn via the canonical map π, then we iterate Ψ on π(x) until we end up with

a point in U , and finally we take its image in An via π−1.

When Ψ acts transitively on Pn, its fractional jump ψ admits an explicit

description in terms of multivariate linear fractional transformations. More pre-

cisely, we have the following:

Theorem 1 ([1, Section 5]). Let Ψ be a transitive automorphism of Pn, and

let ψ be its fractional jump. Then, for i ∈ {1, . . . , n+ 1} there exist

a
(i)
1 , . . . , a(i)n , b(i) ∈ Fq[x1, . . . , xn]

of degree 1 such that, if

U1 =
{
x ∈ An : b(1)(x) 6= 0

}
,

Ui =
{
x ∈ An : b(i)(x) 6= 0, and b(j)(x) = 0, ∀j ∈ {1, . . . , i− 1}

}
,

for i ∈ {2, . . . , n+ 1} ,

and

f (i) =

(
a
(i)
1

b(i)
, . . . ,

a
(i)
n

b(i)

)
,

for i ∈ {1, . . . , n+ 1} ,

then ψ(x) = f (i)(x) if x ∈ Ui. Moreover, the rational maps f (i) can be explicitly

computed.

Proof (sketch). Let us denote by K the field Fq(x1, . . . , xn) of rational functions

on An. We construct a map

ı : PGLn+1(Fq)→ Kn
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in the following way. Let Φ ∈ PGLn+1(Fq), and write

Φ = [F0 : . . . : Fn],

for F0, . . . , Fn ∈ Fq[X0, . . . , Xn] homogeneous polynomials of degree 1. Define

then ı(Φ) ∈ Kn to be the n-tuple of elements of K whose j-th entry for j ∈
{1, . . . , n} is given by

ı(Φ)j =
Fj−1(x1, . . . , xn, 1)

Fn(x1, . . . , xn, 1)
.

It is immediate to check that ı is well defined, that for any f = (f1, . . . , fn) in

the image of ı all the fj ’s are rational functions of degree 1, whose denominators

are all equal up to a non-zero constants, and that ı(Φ1 ◦ Φ2) = ı(Φ1) ◦ ı(Φ2),

where ı(Φ1)◦ ı(Φ2) is simply defined by plugging in the components of ı(Φ2) into

the variables of ı(Φ1).

Let now Ψ ∈ PGLn+1(Fq) be transitive. Define f (i) = ı(Ψ i) for i ∈ Z≥1. Then,

by construction for any i ∈ Z≥1 there exist a
(i)
1 , . . . , a

(i)
n , b(i) ∈ Fq[x1, . . . , xn] of

degree 1 such that

f (i) =

(
a
(i)
1

b(i)
, . . . ,

a
(i)
n

b(i)

)
.

It can be proved, see [1, Section 5] for the details, that the transitivity of Ψ

implies that
n+2⋂
i=1

{
x ∈ An : b(i)(x) = 0

}
= ∅. (2.1)

Define then

U1 =
{
x ∈ An : b(1)(x) 6= 0

}
,

Ui =
{
x ∈ An : b(i)(x) 6= 0, and b(j)(x) = 0, ∀j ∈ {1, . . . , i− 1}

}
,

for i ∈ {2, . . . , n+ 1} .

By (2.1) we have that {Ui}i∈{1,...,n+1} is a disjoint covering of An. Also, we

clearly have that ψ(x) = f (i)(x) if x ∈ Ui.

Remark 1. The reader should notice that the b(i) are equal on each component,

and therefore the evaluation of ψ only requires one inversion in the base field.

Remark 2. Another important fact to notice is that the definition of ψ depends

uniquely on the rows of M i’s, where M ∈ GLn+1(Fq) is any matrix in the class
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of Ψ . In fact, notice that if the last row of M i is (m
(i)
n+1,1, . . . ,m

(i)
n+1,n+1), then

b(i) = m
(i)
n+1,n+1 +

∑n
j=1m

(i)
n+1,jxj . On the other hand, for any j ∈ {1, . . . , n}, if

(m
(i)
j,1, . . . ,m

(i)
j,n+1) is the j-th row of M i, then a

(i)
j = m

(i)
j,n+1 +

∑n
j=1m

(i)
j,n+1xj .

What is done here is essentially dehomogenising the projective map induced by

the class of M i and then restricting that to the affine points.

We now provide a simple example to fix the ideas.

Example 1. Let q = 5 and n = 2. Consider the automorphism of P2 defined by

Ψ([X0 : X1 : X2]) = [3X0 + 2X1 +X2 : 3X0 + 3X1 +X2 : 3X1 + 4X2].

A representative for Ψ in GL3(F5) is given by

M =


3 2 1

3 3 1

0 3 4

 ,

whose characteristic polynomial

χM (T ) = T 3 + 4T + 3

is projectively primitive, since it is irreducible, and (53−1)/(5−1) = 31 is prime.

By [1, Theorem 3.4], it follows that Ψ acts transitively on P2, and then Theorem

1 applies to the fractional jump ψ of Ψ . Direct computations show that for

U1 =
{

(x1, x2) ∈ A2 : 3x2 + 4 6= 0
}
,

U2 =
{

(x1, x2) ∈ A2 : 3x2 + 4 = 0, and 4x1 + x2 + 4 6= 0
}
,

U3 = {(1, 2)} ,

and

f (1)(x1, x2) =

(
3x1 + 2x2 + 1

3x2 + 4
,

3x1 + 3x2 + 1

3x2 + 4

)
,

f (2)(x1, x2) =

(
4

4x1 + x2 + 4
,

3x1 + 3x2
4x1 + x2 + 4

)
,

f (3)(x1, x2) =

(
2x2 + 1

3x2 + 1
,

3x1 + 1

3x2 + 1

)
,

we have that {Ui}i∈{1,2,3} is a disjoint covering of A2 such that ψ(x) = f (i)(x)

if x ∈ Ui.
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The purpose of this section is to show that transitive fractional jumps can

only arise from transitive projective automorphisms, except from some very spe-

cial cases, which can be entirely classified. Before proving the main theorem, let

us recall a standard linear algebra fact, which follows from the results in [11,

XIV, §2, §3].

Lemma 1. Let k be a field, let V be a finite dimensional vector space over k, and

let M be a k-linear endomorphism of V . Assume that the minimal polynomial

and the characteristic polynomial of M are equal. Then, there exists v0 ∈ V such

that the set
{
Mkv0 : k ∈ Z≥0

}
spans V over k.

We also need the following lemma:

Lemma 2. Let p(T ) ∈ Fq[T ] be an irreducible polynomial, and let e ≥ 1 be a

positive integer. Let [T ] be the class of T in Γ = (Fq[T ]/(p(T )e))∗, and let [[T ]]

be the class of T in G = Γ/F∗q . Then, the order of [[T ]] in G equals the order of

[T ]q−1 in Γ .

Proof. Let k be the order of [[T ]] in G and let h be the order of [T ]q−1 in Γ .

Then, [[T ]]k = 1 in G gives [T ]k ∈ F∗q . But then 1 = ([T ]k)q−1 = ([T ]q−1)k, and

so h | k.

On the other hand, let us firstly show that if s ∈ Fq[T ]/(p(T )e) satisfies

sq−1 − 1 = 0, then s ∈ F∗q . In fact, by reducing s modulo p(T ) we get that

s = c+ k(T )p(T ) mod p(T )e, for c ∈ F∗q and k(T ) ∈ Fq[T ].

Now, by multiplying the equation sq−1 − 1 = 0 by s, and plugging in the above

special form for s, we get

(c+ k(T )p(T ))q − (c+ k(T )p(T )) ≡ (k(T )p(T ))q − k(T )p(T )

≡ k(T )p(T )((k(T )p(T ))q−1 − 1) ≡ 0 mod p(T )e.

But now k(T )p(T ))q−1− 1 is invertible modulo p(T )e, and so k(T )p(T ) must be

zero modulo p(T )e, which forces s to be c modulo p(T )e.

It then follows that 1 = ([T ]q−1)h = ([T ]h)q−1 in Γ gives [T ]h ∈ F∗q , from

which we get [[T ]]h = 1 in G, and so k | h.

The main result of this section is the following:
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Theorem 2. Let Ψ be an automorphism of Pn and let ψ be its fractional jump.

Then, Ψ acts transitively on Pn if and only if ψ acts transitively on An, unless

q is prime and n = 1, or q = 2 and n = 2, with explicit examples in both cases.

Proof. For any q and n, it is immediate to show that if Ψ is transitive then ψ

is transitive. In the case of q prime and n = 1 or q = 2 and n = 2 there exist

explicit examples of transitive affine transformations, namely

ϕ1(x) = x+ 1, if q is prime and n = 1,

ϕ2(x1, x2) =

(
1 1

0 1

)
·

(
x1

x2

)
+

(
1

1

)
, if q = 2 and n = 2.

Define then

Φ1([X0 : X1]) = [X0 +X1 : X1], if q is prime and n = 1,

Φ2([X0 : X1 : X2]) = [X0 +X1 +X2 : X1 +X2 : X2], if q = 2 and n = 2.

Clearly, ϕi is the fractional jump of Φi for i ∈ {1, 2}. However, it is immediate to

see that Φi fixes the hyperplane at infinity, so cannot be transitive for i ∈ {1, 2}.
Let us now assume that we are not in the above pathological cases, and that

ψ is transitive. Write Ψ = [M ] ∈ PGLn+1(Fq) for some M ∈ GLn+1(Fq), and

let χM (T ), µM (T ) ∈ Fq[T ] be respectively the characteristic polynomial and the

minimal polynomial of M . The vector space V = Fn+1
q over Fq has a natural

structure of Fq[T ]-module given by

f(T )v = f(M)v, for f(T ) ∈ Fq[T ], and v ∈ V.

Let Fq[M ] be the subalgebra of the algebra of Fq-linear endomorphisms of V

generated by M , and let GΨ be the quotient (multiplicative) group Fq[M ]∗/F∗q .
We firstly prove that µM (T ) = χM (T ). Assume by contradiction µM (T ) 6=

χM (T ), so that degµM (T ) ≤ n. Then, given any P ∈ U , and any x ∈ An such

that P = π(x), we have

qn = oψ(x) ≤ oΨ (P )

≤ |GΨ |

≤ qn − 1

q − 1
< qn,

a contradiction, which implies µM (T ) = χM (T ).
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Define now

N =
{
P ∈ H : Ψ i(P ) ∈ H, ∀i ∈ Z

}
.

We want to show that N = ∅. Note that this would immediately imply that Ψ

is transitive. To see this, given any P,Q ∈ Pn, if N = ∅ then there exist i, j ∈ Z
such that P ′ = Ψ i(P ), Q′ = Ψ j(Q) ∈ U . Let x′, y′ ∈ An be such that P ′ = π(x′)

and Q′ = π(y′). As ψ acts transitively on An by hypothesis, there exists ` ∈ Z
such that y′ = ψ`(x′). Then, by the definition of ψ, there exists an integer k ≥ `
such that Q′ = Ψk(P ′). In conclusion, we get Q = Ψ i+k−j(P ), and so we have

that if N = ∅ then Ψ is transitive.

Assume by contradiction that N 6= ∅. Define

W =
{
v ∈ V : (M iv)n+1 = 0, ∀i ∈ Z

}
,

where (M iv)n+1 denotes the (n + 1)-th component of M iv. It is immediate to

check that W is a subspace of V , and that N = PW . Also, W is clearly Fq[M ]-

invariant, and so it is an Fq[T ]-submodule of V . Let g(T ) ∈ Fq[T ] is a monic

generator of the annihilator AnnFq [T ](W ) of W as Fq[T ]-module. We have that

g(T ) | µM (T ), since µM (M)w = 0 for any w ∈ W . Also, g(T ) 6= 1 as N 6= ∅ by

assumption, and g(T ) 6= µM (T ), since N ⊆ H gives deg g(T ) ≤ n. This shows

that if N 6= ∅ the µM (T ) is reducible.

Let us now prove instead that µM (T ) is irreducible, so that we get a contra-

diction. We firstly prove that µM (T ) = p(T )e for some irreducible polynomial

p(T ) ∈ Fq[T ] and some integer e ≥ 1.

Since µM (T ) = χM (T ), then by Lemma 1 we know that there exists v0 ∈
V such that the set

{
Mkv0 : k ∈ Z≥0

}
spans V over Fq. Clearly, v0 /∈ W ,

since otherwise we would have W = V , as W is Fq[M ]-invariant, which is a

contradiction as N ⊆ H. We show now that d(M)v0 ∈ W \ {0} for any d(T ) ∈
Fq[T ] such that d(T ) | µM (T ), and d(T ) 6= 1, µM (T ). Let d(T ) be any of such

polynomials. Clearly d(M)v0 6= 0, as otherwise the span of
{
Mkv0 : k ∈ Z≥0

}
over Fq would have dimension less or equal than deg d(T ), which is less or equal

than n by assumption. Define then Wd to be the span of
{
Mkd(M)v0 : k ∈ Z≥0

}
over Fq. It is immediate to see that Wd is an Fq[M ]-invariant subspace of V of

dimension less or equal than deg(µM (T )/d(T )), which is less or equal than n by

assumption. Assume by contradiction d(M)v0 /∈ W . Then, if we let Pd be the

class of d(M)v0 in Pn, we have Pd /∈ N , and so there exists i ∈ Z such that
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Qd = Ψ i(Pd) ∈ U . Let yd ∈ An be such that Qd = π(yd). Then,

qn = oψ(yd) ≤ oΨ (Qd)

= |OΨ (Pd)|

≤ |PWd|

≤ qn − 1

q − 1
< qn,

a contradiction. This proves that d(M)v0 ∈ W \ {0} for any d(T ) ∈ Fq[T ] such

that d(T ) | µM (T ), and d(T ) 6= 1, µM (T ).

Recall that we want to prove that µM (T ) = p(T )e for some irreducible poly-

nomial p(T ) ∈ Fq[T ] and some integer e ≥ 1. Assume then by contradiction

that there exist p1(T ), p2(T ) ∈ Fq[T ] distinct irreducible polynomials such that

p1(T ), p2(T ) | µM (T ). Then, by Bézout’s identity, there exist a(T ), b(T ) ∈ Fq[T ]

such that a(T )p1(T )+b(T )p2(T ) = 1, and so a(M)p1(M)v0+b(M)p2(M)v0 = v0.

Now, pi(M)v0 ∈W for i ∈ {1, 2} by the claim above, and so v0 ∈W , as W is an

Fq[M ]-invariant subspace of W , which is a contradiction. Therefore, we conclude

that µM (T ) = p(T )e for some irreducible p(T ) ∈ Fq[T ] and some e ≥ 1.

We finally show that µM (T ) is irreducible, that is e = 1. Let us set f =

deg p(T ), and let [[T ]] be the class of T in GΨ . We want to show that the order

of [[T ]] in GΨ divides

A(q, e, f) = qdlogq ee
qf − 1

q − 1
.

Let [T ] be the class of T in Fq[M ]∗. As Fq[M ]∗ ∼= (Fq[T ]/(p(T )e))∗, by Lemma

2 it is enough to show that the order of [T ]q−1 in Fq[M ]∗ divides A(q, e, f).

Now, since [T ]q
f−1 ≡ 1 mod p(T ), we have [T ]q

f−1 = 1 + k(T )p(T ) for some

k(T ) ∈ Fq[T ], and so

([T ]q−1)A(q,e,f) = ([T ]q
f−1)q

dlogq ee

= [1 + k(T )p(T )]q
dlogq ee

= [1 + k(T )q
dlogq ee

p(T )q
dlogq ee

] = 1 in Fq[M ]∗,

as qdlogq ee ≥ e.
Let P ∈ U , and let x ∈ An be such that P = π(x). Then

qn = oψ(x) ≤ oΨ (P )

≤ A(q, e, f),
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since the size of OΨ (P ) is less or equal than the order of [[T ]] in GΨ . Notice also

that here n = ef − 1, since µM (T ) = p(T )e and f = deg p(T ).

Assume by contradiction that e ≥ 2. We firstly prove that this forces f = 1.

Rewrite the inequality qef−1 ≤ A(q, e, f) as

qef−1−dlogq ee ≤ qf − 1

q − 1
. (2.2)

Since the quantity

qef−1−dlogq ee − qf − 1

q − 1

is increasing in e and f , it is enough to show that (2.2) is never verified for e = 2

and f = 2. Now, inequality (2.2) for e = 2 and f = 2 becomes

q2 ≤ q + 1,

which is false for every q. Then f = 1.

We want now to show that for f = 1 the inequality (2.2) forces q to be prime

and n = 1, or q = 2 and n = 2, which are exactly the pathological cases we

excluded. For f = 1, inequality (2.2) becomes

qe−1−dlogq ee ≤ 1,

which is equivalent to

e− 1− dlogq ee ≤ 0.

The quantity e−1−dlogq ee is clearly increasing in e. Then, for e ≥ 4 it is enough

to show that it never holds for e = 4. In this case, in fact, we have dlogq 4e ≤ 2

for every q, and so 4 − 1 − dlogq 4e ≥ 1 for every q. For e = 3, in which case

n = 2, we have dlog2 3e = 2, and dlogq 3e = 1 otherwise. Then, the inequality is

satisfied for q = 2, and never satisfied for q 6= 2. Finally, for e = 2 we have n = 1.

Since for n = 1 if Ψ sends a point of U to the point at infinity, then ψ transitive

gives Ψ transitive by [1, Proposition 2.6], and so e = 1 by [1, Theorem 3.4], a

contradiction. We have then that Ψ maps no point of U to the point at infinity,

and so ψ is an affine map. But then, since ψ is transitive (and in particular the

inequality holds) then q is prime by [1, Theorem 2.7]. In conclusion, we proved

that if e ≥ 2 then q is prime and n = 1, or q = 2 and n = 2, which are the

pathological cases excluded at the beginning. Therefore e = 1, and so µM (T ) is

irreducible.
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3 Artin-Schreier fractional jumps

Let q = p be a prime number. In this section we consider fractional jumps of

automorphisms of Pp−1 defined by companion matrices of Artin-Schreier poly-

nomials

αc(T ) = T p − T − c ∈ Fp[T ], for c ∈ F∗p.

Proposition 1. The polynomial αc(T ) is projectively primitive for every c ∈ F∗p.

Proof. Notice that it is well known that the polynomials αc(T ) are irreducible

for every c ∈ F∗p by the theory of Artin-Schreier extensions. Let now c ∈ F∗p
be fixed. We want to show that αc(T ) is projectively primitive. Let c′ ∈ F∗p be

such that c/c′ generates F∗p. Then, the polynomial T p − T − c/c′ is primitive

by [3, Theorem 1.2], and so projectively primitive. Now, this implies that the

polynomial c′T p − c′T − c = (c′T )p − c′T − c is projectively primitive, and so

αc(T ) is projectively primitive.

Fix c ∈ F∗p, let M ∈ GLp(Fq) be the companion matrix of αc(T ), let Ψ = [M ],

and let ψ be the fractional jump of Ψ . Let x0 ∈ Ap−1, and let {x(k)}k∈N be the

sequence recursively defined by x(k+1) = ψ(x(k)). By [1, Theorem 3.4] we know

that the sequence {x(k)}k∈N has full orbit.

3.1 Explicit description

In what follows we want to give the explicit description of the Artin-Schreier

fractional jump ψ.

For i ∈ {1, . . . , p− 1} we have that

M i =

(
0i,p−i Ji(c)

t

Idp−i E
(1,i)
p−i,i

)
,

where 0i,p−i is the i × (p − i) zero matrix, Ji(c)
t is the transpose of a Jordan

block of size i× i and eigenvalue c, that is

Ji(c)
t =



c 0 · · · · · · 0

1 c 0
...

0 1 c
...

...
. . .

. . . 0

0 · · · 0 1 c


,
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the matrix Idp−i is the (p − i) × (p − i) identity, and E
(1,i)
p−i,i is the (p − i) × i

matrix with (1, i)-entry equal to 1, and all the other entries equal to zero. For

i = p we clearly have Mp = M + cIdp.

Following Remark 2, let us now compute explicitly the polynomials b(i)’s and

the sets Ui’s, for i ∈ {1, . . . , p}, by looking at the last row of M i.

b(i) = xp−i,

for i ∈ {1, . . . , p− 2} ,

b(p−1) = x1 + 1,

b(p) = xp−1 + c,

which gives

U1 =
{
x ∈ Ap−1 : xp−1 6= 0

}
,

Ui =
{
x ∈ Ap−1 : xp−i 6= 0, and xp−j = 0, ∀j ∈ {1, . . . , i− 1}

}
,

for i ∈ {2, . . . , p− 2} ,

Up−1 =
{
x ∈ Ap−1 : x1 + 1 6= 0, and xp−j = 0, ∀j ∈ {1, . . . , p− 2}

}
,

Up =
{
x ∈ Ap−1 : xp−1 + c 6= 0, x1 + 1 = 0, and xp−j = 0, ∀j ∈ {1, . . . , p− 2}

}
= {(−1, 0, . . . , 0)} .

The polynomials a
(i)
j , for i ∈ {1, . . . , p} and j ∈ {1, . . . , p− 1}, are easily

computed as well by looking at the j-th row of M i.

– for i = 1 we have that

• if j = 1 then a
(1)
1 = c,

• if j = 2 then a
(1)
2 = x1 + 1,

• for any j ∈ {3, . . . , p− 1} then a
(1)
j = xj−1.

– for i ∈ {2, . . . p− 1} we have that

• if j = 1 then a
(i)
1 = cxp−i+1,

• if j ∈ {2, . . . , i− 1} then a
(i)
j = xp−i+j−1 + cxp−i+j ,

• if j = i then a
(i)
i = xp−1 + c,

• if j = i+ 1 then a
(i)
i+1 = x1 + 1,

• if j ∈ {i+ 2, . . . , p− 1} then a
(i)
j = xj−i.

– for i = p we have that

• if j = 1 then a
(p)
1 = cx1 + c,

• if j = 2 then a
(p)
2 = x1 + cx2 + 1,

• if j ∈ {3, . . . , p− 1} then a
(p)
j = xj−1 + cxj .

By Theorem 1 this provides the explicit structure of ψ.
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3.2 Computational complexity

Now that we have the explicit description of the fractional jump, we are ready to

establish the expected complexity of computing a random term in the sequence

{x(k)}k∈N given by iterating the Artin-Schreier fractional jump ψ.

The expected complexity of computing x(k+1) given a term x(k) chosen uni-

formly at random in the sequence is

E =

p∑
i=1

pici,

where pi is the probability that x(k) ∈ Ui, which is

pi =

p−i(p− 1), if i ∈ {1, . . . , p− 1} ,

p1−p, if i = p,

and ci is the complexity of evaluating ψ at x(k) when x(k) ∈ Ui.
We want now to evaluate ci for i ∈ {1, . . . , p}. If x(k) ∈ Ui, the number of

sums needed to compute x(k+1) = ψ(x(k)) = f (i)(x(k)) is si =
∑p
j=1(r

(i)
j − 1),

where r
(i)
j is the number of non-zero entries in the j-th row of the matrix M i.

Since the denominators of the components of f (i) are all equal, the number

of inversions needed is always 1.

Also, the number of multiplications needed is given by the number mi of

entries different from 0 and 1 in the p×(p−1) submatrix of M i given by dropping

the last column (this can be seen as the last component of the projective point is

set to 1 in the fractional jump) plus the number of multiplications of b(i)(x(k))−1

by the a
(i)
j ’s, which is simply p− 1.

Since the length of the orbit pp−1 is superexponential, the size of p can be

chosen relatively small in such a way that one can build look-up tables for the

operations in Fp (so they will all have the same cost) and still get a huge orbit.

Therefore

ci = si︸︷︷︸
sums

+ 1︸︷︷︸
inversions

+ mi + p− 1︸ ︷︷ ︸
multiplications

.

It remains to compute si and mi. Given the explicit description previously

provided, we have si = i for i ∈ {1, . . . , p− 1} and sp = p + 1, and mi = i − 1

for i ∈ {1, . . . , p}. Therefore, we have ci = p + 2i − 1 for i ∈ {1, . . . , p− 1} and

cp = 3p.
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The expected complexity is then

E = 3p2−p +

p−1∑
i=1

p−i(p− 1)(p+ 2i− 1)

= 3p2−p − 3p3 − (p2 + 1)pp − 4p2 + 3p

pp(p− 1)
= p+O

(
1

p

)
.

This means that the expected complexity of computing the (k + 1)-th vec-

tor of the sequence roughly consists of p checks of the look-up tables, one for

each component: morally, we are filling out each component of the term of the

sequence by directly reading the look-up table, which is why the process is very

efficient.

Remark 3. Clearly, the expected complexity can be further optimised by using

the equations defining the Ui’s, but this will not affect the asymptotic behaviour

of E.

4 Conclusions and further research

In this paper we proved that the transitivity of the fractional jumps and the

transitivity of the projective automorphisms inducing them are equivalent con-

ditions, except from some degenerate cases which are entirely classified. This

puts the last stone for the foundational theory of this new construction: for fixed

base field and fixed dimension, the problem of finding all transitive fractional

jump is now reduced to finding transitive projective automorphisms. In addition,

using the theory of Artin-Schreier polynomials, we showed that the construction

is sistematically feasible when the dimension of the projective space is prime and

equal to the characteristic of the field. The question now arising is:

Question 1. Can one give new explicit classes of projectively primitive polyno-

mials?

Such new classes will allow to use companion matrices of such polynomials (or

their conjugates) to build full orbit fractional jump sequences. In particular, it

would be of interest to do this for any fixed dimension and in characteristic 2,

and with sparse polynomials.
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