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Abstract. We define two families of sextics. By computer search on
one family, we find new curves of genus 5 attaining the Hasse–Weil–
Serre bound over F71, F191 and F115 , and we update 3 entries of genus 5
in manYPoints.org. Among another family, we find new curves of genus
7 attaining the Hasse–Weil–Serre bound over Fp3 for some primes p. We
determine the precise condition on the finite field over which the sextics
attain the Hasse–Weil–Serre bound.
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1 Introduction

Goppa discovered algebro-geometric codes in 1970s, where we can construct
efficient codes from explicit curves with many rational points; see [11]. For a
curve C of genus g(C) over a finite field Fq, we have the Hasse–Weil bound
#C(Fq) ≤ q+1+2g(C)

√
q. A curve attaining this bound is said to be maximal.

Here p is a prime number and q is a power of p, #C(Fq) is the number of
rational points of C over Fq. By a curve we mean a projective geometrically
irreducible nonsingular curve. In 1983, Serre improved this bound as #C(Fq) ≤
q+1+ g(C)⌊2√q⌋, which we call the Serre bound. Here ⌊·⌋ means round down.

Many properties of maximal curves have been widely investigated; see [2],
[4] and references therein. However, this is not the case of non-maximal curves
attaining the Serre bound with its genera ≥ 4. There are known only examples
of genera 4 and 10 in [6], genus 6 in [7–9], genus 11 in [10].

The purpose of this research is to find more explicit examples. In the process
of studying the sextics in [7, 8], we get an idea to define two families of sextics
in Section 2 and 4. Among them by computer search, we find new non-maximal
curves of genera 5 and 7 attaining the Serre bound in Section 3 and 5 respectively.

2 A family of sextics of genus ≤ 5

Let k be a field of characteristic p 6= 2, 3, 5 in this section, and k̄ be its algebraic
closure.
⋆ Partially supported by JSPS Grant-in-Aid for Scientific Research (C) 17K05344.
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Definition 1. We set a sextic C over a field k with the following equation:

x3y3 + x5 + y5 + ax2y2 + bxy + c = 0,

where a, b, c ∈ k and c 6= 0.

Let JC be the Jacobian variety of a curve C. Theorem B of [5] plays an
important role when we decompose a Jacobian variety of a curve in this article.

Theorem 1. (Theorem B, [5]) Given a curve X, let G ≤ Aut(X) be a finite

group such that G = H1 ∪· · ·∪Hm where the subgroups Hi satisfy Hi∩Hj = 1G
if i 6= j. Then we have the following isogeny relation

Jm−1

X × Jg
X/G ∼ Jh1

X/H1
× · · · × Jhm

X/Hm

where g = |G| and hi = |Hi| and Jr means the product of J with itself r times.

Proposition 1. Assume that there exists ζ ∈ k, such that ζ5 = 1. The Jacobian

variety of C decomposes over k have the following isogeny relation

JC ∼ J2

Cσ
× JCτ

,

where Cσ : f(x, y) = 0 and Cτ : y2 = h(x) with

f(x, y) = x5 − 5x3y + 5xy2 + y3 + ay2 + by + c,

h(x) = (x3 + ax2 + bx+ c)2 − 4x5.

Proof. For σ : (x, y) 7→ (y, x), we have the quotient as

C/〈σ〉 : x5 − 5x3y + 5xy2 + y3 + ay2 + by + c = 0.

For τ : (x, y) 7→ (ζx, ζ−1y), we have

C/〈τ〉 : x2 + (y3 + ay2 + by + c)x+ y5 = 0,

which is birational equivalent to y2 = (x3 + ax2 + bx+ c)2 − 4x5.
Set G = 〈σ, τ〉. We have G = 〈σ〉 ∪ 〈τ〉 ∪ 〈στ〉 ∪ 〈στ2〉 ∪ 〈στ3〉 ∪ 〈στ4〉. From

Theorem 1,

J5

C × J10

C/G ∼ J2

C/〈σ〉 × J5

C/〈τ〉 × J2

C/〈στ〉 × J2

C/〈στ2〉 × J2

C/〈στ3〉 × J2

C/〈στ4〉.

The genus of C/G is 0. Further C/〈στ i〉 for i = 1, 2, 3, 4 are birational equivalent
to C/〈σ〉, therefore JC ∼ J2

C/〈σ〉 × JC/〈τ〉. Setting C/〈σ〉 and C/〈τ〉 as Cσ and
Cτ respectively, which completes the proof.

Corollary 1. Let q = 1(mod5). We have that

#C(Fq) = 2#Cσ(Fq) + #Cτ (Fq)− 2q − 2.
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Proof. It is well known that #C(Fq) = q+1−t, where t is the trace of Frobenius
acting on a Tate module of JC . Proposition 1 implies that this Tate module is
isomorphic to a direct sum of two copies of the Tate module of JCσ

and Cτ . Hence
t = 2t1 + t2, where t1 and t2 are the trace of Frobenius on the Tate module of
JCσ

and Cτ respectively. Since t1 = q+1−#Cσ(Fq) and t2 = q+1−#Cτ (Fq),
the result follows.

For polynomials u(x) and v(x), we set the resultant Res(u, v) as the deter-
minant of the Sylvester matrix.

Lemma 1. Let α, β be roots of 1 − 3x + x2 = 0 in k̄, fy(x, y) be the partial

derivative of f with respect to y. Set uα(x) = f(x, αx2), vα(x) = fy(x, αx
2). If

Res(uα, vα) = Res(uβ , vβ) = 0, then the genus g(Cσ) ≤ 2.

Proof. The infinity of Cσ is a singular point, hence the genus g(Cσ) ≤ 4. If
Res(uα, vα) = 0, then there exists s ∈ k̄, such that uα(s) = vα(s) = 0. It means
that f(s, αs2) = fy(s, αs

2) = 0. The partial derivative of f with respect to x is
fx(x, y) = 5(x4 − 3x2y + y2). Thus fx(s, αs

2) = 0, which means that (s, αs2)
is a singular point on the affine piece. Similarly, if Res(uβ, vβ) = 0 then there
exists another singular point (t, βt2) on the affine piece. Therefore the genus
g(Cσ) ≤ 2.

Lemma 2. Set h′(x) as the differentiation of h(x). If Res(h, h′) = 0, then the

genus g(Cτ ) ≤ 1.

Proof. If Res(h, h′) = 0, then there exists s ∈ k̄ such that h(x) = (x − s)2h1(x)
where deg h1 = 4. Hence Cτ is birational to y2 = h1(x), which means g(Cτ ) ≤ 1.

Proposition 2. If Res(uα, vα) = Res(uβ , vβ) = Res(h, h′) = 0, then the genus

g(C) ≤ 5.

Proof. From Proposition 1, we have that g(C) = 2g(Cσ) + g(Cτ ). Lemma 1 and
2 imply the result immediately.

We remark that the condition of Proposition 2 is simple to implement in com-
puter search.

3 Curves of genus 5 attaining the Serre bound

We search by MAGMA [1] among C over Fq for q ≡ 1(mod 5), under the condi-
tion of Proposition 2, using Corollary 1. New curves of genus 5 are found, which
update three entries in [3], whom we list in Table 1. In [3] the tables record for
a pair (q, g) an entry α − β where β is the best upper bound for the maximum
number of points of a curve of genus g over Fq and α gives a lower bound ob-
tained from an explicit example of a curve defined over Fq with α (or at least
α) rational points.

Example 1. x3y3 + x5 + y5 + 2x2y2 + 4xy + 25 = 0 has 82 rational points over
F31.
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Table 1. Curves of genus 5 with many points

Fq #C(Fq) old entry
31 82 −82
71 152 −152
115 165062 −165062

Example 2. The sextic C attains the Serre bound over Fq, when (q, a, b, c) =
(71, 4, 46, 36), (191, 134, 126, 2), (115, 10, 9, 10).

Simultaneously, we find maximal curves of genus 5.

Example 3. The sextic C is maximal over Fp2 , when (p, a, b, c) =
(29, 17, 28, 28), (31, 1, 3, 7), (41, 28, 29, 31), (59, 9, 16, 28), (61, 11, 9, 10),
(71, 0, 62, 64), (79, 5, 10, 12), (89, 8, 20, 8), (101, 46, 89, 38), (109, 4, 87, 7),
(131, 0, 107, 97), (139, 2, 43, 122), (149, 5, 43, 59), (151, 5, 41, 115),
(179, 7, 152, 90), (181, 67, 41, 18), (191, 2, 9, 17), (199, 17, 196, 24), etc.

We list them in Table 2. We note that we practice for p ≤ 269 in this case.

Table 2. Maximal curves of genus 5 over Fp2

7 11 13 17 19 23 29 31 37
C C

41 43 47 53 59 61 67 71 73
C C C C
79 83 89 97 101 103 107 109 113
C C C C
127 131 137 139 149 151 157 163 167

C C C C
173 179 181 191 193 197 199

C C C C

From Table 2, we have a conjecture.

Conjecture 1. Let p > 23. If p ≡ ±1(mod5), then there exists a sextic C of
genus 5, which is maximal over Fp2 .

4 A family of sextics of genus 7

Let k be a field of characteristic p 6= 2, 3 in this section.
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Definition 2. We set a sextic W over k with the following equation:

x4y2 + y4 + x2 + x2y4 + y2 + x4 + bx2y2 = 0,

where b ∈ k.

We decompose the Jacobian variety, where the idea comes from Proposition 10
in [7].

Proposition 3. The sextic W over a field k have the following isogeny relation:

JW ×H2

2
∼ J3

H ,

where the curves are defined by

H2 : x2y + y2 + x+ xy2 + y + x2 + bxy = 0,

H : x2y2 + y4 + x+ xy4 + y2 + x2 + bxy2 = 0.

Proof. Since σ : (x, y) 7→ (−x, y), τ : (x, y) 7→ (x,−y) are automorphisms of W ,
from Theorem 1, we have that

JW × J2

W/〈σ,τ〉 ∼ JW/〈στ〉 × JW/〈σ〉 × JW/〈τ〉.

W/〈σ, τ〉 is birational equivalent to H2. Further, W/〈στ〉, W/〈σ〉 and W/〈τ〉 are
birational equivalent to H , which show the isogeny relation.

Afterward, set b 6= 2, 3,−6.
Proposition 4. The jacobian variety of the curve H over a field k have the

following isogeny relation:

JH ∼ E1 × E2 × E3,

where the elliptic curves Ei : y
2 = xfi(x) for i = 1, 2, 3 are given by

f1(x) = x2 − bx− (b− 3),

f2(x) = (x− 1)(x− (b − 2)),

f3(x) = x2 + (b2 − 12)x− 16(b− 3).

Proof. Since σ : (x, y) 7→ (x/y2, 1/y), τ : (x, y) 7→ (x,−y) are automorphisms of
H , from Theorem 1, we have

JH × J2

H/〈σ,τ〉 ∼ JH/〈στ〉 × JH/〈σ〉 × JH/〈τ〉.

Now, an explicit quotient map H → H/〈στ〉 is given by

(x, y) 7→ (x+ x/y2, y − 1/y),

where one gets

H/〈στ〉 : x2 + xy2 + bx+ 2x+ y2 + 4 = 0,
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which is birational equivalent to E1.

Next, an explicit quotient map H → H/〈σ〉 is given by

(x, y) 7→ (x/y, y + 1/y),

where we have

H/〈σ〉 : −(x3 + y3 − 3y) + (x+ y)(x2 + y2 − 2) + bx = 0,

which is birational equivalent to E2.

H/〈τ〉 is birational equivalent E3, and the genus of H/〈σ, τ〉 is 0, which give
the desired result.

Theorem 2. The sextic W over a field k have the following isogeny relation

JW ∼ E3

1
× E3

2
× E3.

And the genus g(W ) = 7.

Proof. H2 is birational equivalent to E3, hence Proposition 3 and 4 show the
result. Moreover, E1, E2 and E3 are nonsingular when b 6= 2, 3,−6.

Corollary 2. We have that

#W (Fq) = 3#E1(Fq) + 3#E2(Fq) + #E3(Fq)− 6q − 6.

Proof. It is well known that #W (Fq) = q+1−t, where t is the trace of Frobenius
acting on a Tate module of JW . Theorem 2 implies that this Tate module is
isomorphic to a direct sum of three copies of the Tate module of E1, E2 and
E3. Hence t = 3t1 + 3t2 + t3, where t1, t2 and t3 are the trace of Frobenius on
the Tate module of E1, E2 and E3 respectively. Since ti = q + 1 −#Ei(Fq) for
i = 1, 2, 3, the result follows.

Note that the j-invariants of E1, E2, E3 are respectively

28(b2 + 3b− 9)3

(b− 2)(b− 3)2(b + 6)
,

28(b2 − 5b+ 7)

(b − 2)2(b− 3)2
,

b3(b3 − 24b+ 48)3

(b− 2)3(b− 3)2(b+ 6)
.

5 Curves of genus 7 attaining the Serre bound

We search by MAGMA [1] among W over Fq, using Corollary 2. For an elliptic
curve E, we implement the next algorithm to compute ni with i ≥ 2 from n1,
where ni = #E(Fpi). It is based on the theory of Zeta function.
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Algorithm.

INPUT: n1, i.
OUTPUT: n2, n3, · · · , ni.
1. a1 ← p+ 1− n1.
2. a2 ← a2

1
− 2p.

3. n2 ← p2 + 1− a2.
4. for j = 3 to i do:

aj ← a1aj−1 − paj−2

nj ← pj + 1− aj .
5. Return n2, n3, · · · , ni.

We find curves of genus 7 attaining the Serre bound.

Example 4. The sextic W is maximal over Fp2 , when (p, b) = (23, 13), (47, 26),
(71, 1), (167, 137), (191, 45), (239, 27), (263, 87), (383, 358), (431, 267), (479, 309),
etc.

We note that we practice for p ≤ 99991 in this case.
Afterward we consider the finite field Fp as Z/(p), which is the residue classes

of the integers modulo the ideal generated by a prime p. Set m = (p − 1)/2.
Denote the coefficients of xm in fi(x)

m by Ai for i = 1, 2, 3, which means that

A1 =

⌊m

2
⌋

∑

i=0

m!

(i!)2(m− 2i)!
(−1)m−ibm−2i(b − 3)i,

A2 = Hp(b − 2) =

m
∑

i=0

(

m

i

)2

(b − 2)i,

A3 =

⌊m

2
⌋

∑

i=0

m!

(i!)2(m− 2i)!
(−16)i(b2 − 12)m−2i(b − 3)i.

Theorem 3. Let b ∈ Fp. W is maximal over Fp2 if and only if

A1 ≡ A2 ≡ A3 ≡ 0(mod p).

Proof. It follows from Section V.4 of [12] and Theorem 2.

Example 5. The sextic W attaining the Serre bound over Fp3 , when (p, b) =
(21313, 3663), (30269, 10886), (61519, 56766), (76163, 6230), etc.

We note that we practice for p ≤ 131363 in this case.
For A ∈ Fp, set A as the integer such that A ≡ A(mod p) and 0 ≤ A < p.

Theorem 4. Let p ≥ 11 and b ∈ Fp. W over Fp3 attains the Serre bound if and

only if

A3

1
− 3pA1 = A3

2
− 3pA2 = A3

3
− 3pA3 = −⌊2p√p⌋.

Proof. It follows from Theorem 4 in [7] and Theorem 2.
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