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Abstract. We define two families of sextics. By computer search on
one family, we find new curves of genus 5 attaining the Hasse-Weil-
Serre bound over F71, Fi91 and F;;5, and we update 3 entries of genus 5
in manYPoints.org. Among another family, we find new curves of genus
7 attaining the Hasse-Weil-Serre bound over F,s for some primes p. We
determine the precise condition on the finite field over which the sextics
attain the Hasse—Weil-Serre bound.
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1 Introduction

Goppa discovered algebro-geometric codes in 1970s, where we can construct
efficient codes from explicit curves with many rational points; see [11]. For a
curve C of genus g(C) over a finite field F,, we have the Hasse-Weil bound
#C(F,) < q+1+429(C),/q. A curve attaining this bound is said to be maximal.
Here p is a prime number and ¢ is a power of p, #C(F,) is the number of
rational points of C' over ;. By a curve we mean a projective geometrically
irreducible nonsingular curve. In 1983, Serre improved this bound as #C(F,) <
q+1+g(C)[24/q], which we call the Serre bound. Here |-| means round down.

Many properties of maximal curves have been widely investigated; see [2],
[4] and references therein. However, this is not the case of non-maximal curves
attaining the Serre bound with its genera > 4. There are known only examples
of genera 4 and 10 in [6], genus 6 in [7-9], genus 11 in [10].

The purpose of this research is to find more explicit examples. In the process
of studying the sextics in [7, 8], we get an idea to define two families of sextics
in Section 2 and 4. Among them by computer search, we find new non-maximal
curves of genera 5 and 7 attaining the Serre bound in Section 3 and 5 respectively.

2 A family of sextics of genus < 5

Let k be a field of characteristic p # 2,3, 5 in this section, and k be its algebraic
closure.
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Definition 1. We set a sextic C' over a field k with the following equation:
23y% + 2® + ¢ + ax?y® + bay + ¢ =0,
where a,b,c € k and ¢ # 0.

Let Jo be the Jacobian variety of a curve C. Theorem B of [5] plays an
important role when we decompose a Jacobian variety of a curve in this article.

Theorem 1. (Theorem B, [5]) Given a curve X, let G < Aut(X) be a finite
group such that G = HyU---U H,,, where the subgroups H; satisfy H;NH; = 1¢
if i # j. Then we have the following isogeny relation

m—1 g h hom
Jy % J.;](/G ~ T X X I,

where g = |G| and h; = |H;| and J. means the product of J with itself r times.

Proposition 1. Assume that there exists ( € k, such that (5 = 1. The Jacobian
variety of C' decomposes over k have the following isogeny relation

Jo ~ J& x Je,,
where Cy : f(x,y) =0 and C, : y* = h(z) with
f(z,y) = 2° — 523y + 5ay® + y° + ay® + by +

h(x) = (2% + az® + bx + ¢)? — 42°.

Proof. For o : (z,y) — (y,x), we have the quotient as
C/{o) : 2% — 53y + 5ay® + 3> + ay® + by + ¢ = 0.

For 7 : (z,y) — (Cz,{"ty), we have

C/Hry:2* + (y* +ay® + by + )z +y° =0,
which is birational equivalent to y? = (23 + ax? + bx + ¢)? — 4.

Set G = (0, 7). We have G = (o) U (1) U (o7) U (07%) U (o7%) U (7). From

Theorem 1,
& X Igj6 ~ 0y X TEiry X T piany X T or2) X Tyiorsy X Ty

or3) oT4)"

The genus of C/G is 0. Further C/(o7?) for i = 1,2, 3, 4 are birational equivalent
to C/(o), therefore Jo ~ Jé/w X Joy(ry- Setting C/(o) and C/(r) as Cy and
C'; respectively, which completes the proof.

Corollary 1. Let ¢ = 1(mod5). We have that

#CO(Fq) = 2#Co(Fq) + #C-(Fq) — 29 — 2.
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Proof. It is well known that #C(F,) = g+ 1—t, where ¢ is the trace of Frobenius
acting on a Tate module of Jo. Proposition 1 implies that this Tate module is
isomorphic to a direct sum of two copies of the Tate module of J_ and C;. Hence
t = 2t1 + to, where t; and ¢y are the trace of Frobenius on the Tate module of
Jo, and C; respectively. Since t1 = ¢+ 1 — #C»(Fy) and to = ¢+ 1 — #C(F,),
the result follows.

For polynomials u(z) and v(z), we set the resultant Res(u,v) as the deter-
minant of the Sylvester matrix.

Lemma 1. Let o, (8 be roots of 1 — 3z + x> = 0 in k, f,(z,y) be the partial
derivative of f with respect to y. Set uq(x) = f(z, ax?), vo(x) = fy(x, az?). If
Res(ua,va) = Res(ug,vg) = 0, then the genus g(Cy) < 2.

Proof. The infinity of C, is a singular point, hence the genus g(C,) < 4. If
Res(ua, Vo) = 0, then there exists s € k, such that u,(s) = va(s) = 0. It means
that f(s,as?) = f,(s,as®) = 0. The partial derivative of f with respect to z is
fe(z,y) = 5(x* — 322y + 9?). Thus f.(s,as?) = 0, which means that (s, as?)
is a singular point on the affine piece. Similarly, if Res(ug,vg) = 0 then there
exists another singular point (¢, 5t?) on the affine piece. Therefore the genus
9(Cy) < 2.

Lemma 2. Set h/(x) as the differentiation of h(z). If Res(h,h’) = 0, then the
genus g(Cr) < 1.

Proof. 1f Res(h, h’) = 0, then there exists s € k such that h(x) = (x — 5)%hy ()
where deg h1 = 4. Hence C. is birational to y? = hy(x), which means ¢g(C;) < 1.

Proposition 2. If Res(uq,va) = Res(ug,vg) = Res(h, h’) = 0, then the genus
9(C) <5.

Proof. From Proposition 1, we have that g(C) = 2¢(Cy) + g(C;). Lemma 1 and
2 imply the result immediately.

We remark that the condition of Proposition 2 is simple to implement in com-
puter search.

3 Curves of genus 5 attaining the Serre bound

We search by MAGMA [1] among C' over F, for ¢ = 1(mod 5), under the condi-
tion of Proposition 2, using Corollary 1. New curves of genus 5 are found, which
update three entries in [3], whom we list in Table 1. In [3] the tables record for
a pair (¢q,g) an entry o — 3 where 3 is the best upper bound for the maximum
number of points of a curve of genus g over F, and « gives a lower bound ob-
tained from an explicit example of a curve defined over F, with « (or at least
) rational points.

Example 1. 23y> + 2® + ¢ + 22%y? + 42y + 25 = 0 has 82 rational points over
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Table 1. Curves of genus 5 with many points

F, #C(F,) old entry

31 82 —82
71 152 —152
115 165062 —165062

Ezample 2. The sextic C attains the Serre bound over Fy, when (¢,a,b,c) =
(71,4, 46,36), (191,134, 126, 2), (11°, 10,9, 10).

Simultaneously, we find maximal curves of genus 5.
Ezample 3. The sextic C' is maximal over F2, when (p,a,b,c) =
(29,17,28,28), (31,1,3,7), (41,28,29,31), (59,9,16,28), (61,11,9,10),
(71,0,62,64), (79,5,10,12), (89,8, 20, 8), (101, 46,89, 38), (109, 4,87,7),
(131,0,107,97), (139,2,43,122), (149, 5, 43,59), (151,5,41,115),
(179,7,152,90), (181,67,41,18), (191,2,9,17), (199,17,196,24), etc.

We list them in Table 2. We note that we practice for p < 269 in this case.

Table 2. Maximal curves of genus 5 over I,

7 11 13 17 19 23 29 31 37
Cc C
41 43 47 53 59 61 67 71 73
C Cc C C
79 83 89 97 101103 107 109 113
C C C C
127 131 137 139 149 151 157 163 167
C cC C C
173 179 181 191 193 197 199
c C C C

From Table 2, we have a conjecture.

Congecture 1. Let p > 23. If p = +1(mod5), then there exists a sextic C' of
genus 5, which is maximal over [F 2.

4 A family of sextics of genus 7

Let k be a field of characteristic p # 2, 3 in this section.
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Definition 2. We set a sextic W over k with the following equation:
U byt i 42yt 4 42t bty = 0,
where b € k.

We decompose the Jacobian variety, where the idea comes from Proposition 10
in [7].

Proposition 3. The sextic W over a field k have the following isogeny relation:
Jw x HZ ~ J3,
where the curves are defined by
Ho:2®y+y> +x+ay® +y+2° + bry =0,
H:2?P + oy + o+ oy + 2 + 2% + by = 0.

Proof. Since o : (z,y) — (—x,y), 7: (x,y) — (z, —y) are automorphisms of W,
from Theorem 1, we have that

2
Jw X Ty )7y ~ Iwiery X Jwye) X Jwyiry-

W/{o, ) is birational equivalent to Hy. Further, W/{oT), W/(o) and W/(r) are
birational equivalent to H, which show the isogeny relation.

Afterward, set b # 2,3, —6.

Proposition 4. The jacobian variety of the curve H over a field k have the
following isogeny relation:

JHNE1><E2><E3,
where the elliptic curves E; : y*> = xfi(x) for i =1,2,3 are given by

fi(z) = 2% —bx — (b—3),
fa(z) = (z = 1)(z — (b—2)),
fa(z) = 2% 4+ (b* — 12)x — 16(b — 3).

Proof. Since o : (x,y) = (z/y*,1/y), 7 : (z,y) — (x, —y) are automorphisms of
H, from Theorem 1, we have

Tr X iy (o0 ~ Tory % Trj i) X Tujir)-
Now, an explicit quotient map H — H/{oT) is given by
(z,y) = (z+2/y*y — 1/y),
where one gets

H/{oT):2* + 2y® + bx + 22 +y* +4 =0,
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which is birational equivalent to Fj.
Next, an explicit quotient map H — H/(o) is given by

(z,y) = (x/y,y +1/y),
where we have
H/(o): —(2® +y° = 3y) + (z + y) (2 + y* — 2) + ba = 0,

which is birational equivalent to Fj.
H/(r) is birational equivalent Ej3, and the genus of H/(o, ) is 0, which give
the desired result.

Theorem 2. The sextic W over a field k have the following isogeny relation
Jw ~ E} x E3 x Es.
And the genus g(W) =17.

Proof. Hs is birational equivalent to E3, hence Proposition 3 and 4 show the
result. Moreover, F1, Fo and E3 are nonsingular when b # 2,3, —6.

Corollary 2. We have that
#W(F,) = 3#E1(Fy) + 3#Es(F,) + #E3(F,) — 6q — 6.

Proof. It is well known that #W (F,) = ¢+1—t, where t is the trace of Frobenius
acting on a Tate module of Jy. Theorem 2 implies that this Tate module is
isomorphic to a direct sum of three copies of the Tate module of Ey, Es and
FEs5. Hence t = 3ty + 3ty + t3, where 1, t2 and t3 are the trace of Frobenius on
the Tate module of Ey, Es and Ej respectively. Since t; = ¢ + 1 — #E;(F,) for
1 =1,2, 3, the result follows.

Note that the j-invariants of F, Es, F3 are respectively

28(b% + 3b — 9)3 28(b% —5b+7) b3 (b — 24b + 48)3
(b—2)(b—3)2(b+6)" (b—2)2(b—3)2" (b—2)3(b—3)2(b+6)

5 Curves of genus 7 attaining the Serre bound

We search by MAGMA [1] among W over Fy, using Corollary 2. For an elliptic
curve F, we implement the next algorithm to compute n; with ¢ > 2 from nq,
where n; = #E(F,:). It is based on the theory of Zeta function.
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Algorithm.

INPUT: nq, d.

OUTPUT: ngy,ns,--- ,n;.

l.ag <~ p+1—n;.

2. ag + a? — 2p.

3. ny <—p2+1—a2.

4. for j =3 to i do:
aj < CLl_aj,1 —paj—2
nj < p’ +1—aj.

5. Return ng, ns, -+, n;.

We find curves of genus 7 attaining the Serre bound.
Ezample 4. The sextic W is maximal over F,2, when (p,b) = (23,13), (47,26),

(717 1), (167, 137), (191, 45), (2397 27), (2637 87), (383, 358), (4317 267), (479, 309),
etc.

We note that we practice for p < 99991 in this case.

Afterward we consider the finite field F,, as Z/(p), which is the residue classes
of the integers modulo the ideal generated by a prime p. Set m = (p — 1)/2.
Denote the coefficients of ™ in f;(z)™ by A; for i = 1,2, 3, which means that

m'

Zl = 2 m(_l)m*zbmfm(b _ 3)1,
m 2
A =H,(b—-2) = m (b—2)i,
2 ; (l)
_ %] ml - By |
A =2 im0 -9

Theorem 3. Let b€ F,. W is maximal over F,2 if and only if
Ay = Ay = A3 = 0(mod p).
Proof. Tt follows from Section V.4 of [12] and Theorem 2.

Example 5. The sextic W attaining the Serre bound over F,s, when (p,b) =
(21313, 3663), (30269, 10886), (61519, 56766), (76163,6230), etc.

We note that we practice for p < 131363 in this case.
For A € F,,, set A as the integer such that A = A(modp) and 0 < A < p.

Theorem 4. Letp > 11 and b € F,. W over Fps attains the Serre bound if and
only if
AT = 3pA, = A5 — 3pAy = A} — 3pAs = —[2p\/p).

Proof. Tt follows from Theorem 4 in [7] and Theorem 2.
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