Some sextics of genera five and seven attaining the Serre bound *

Motoko Qiu Kawakita

Department of Mathematics, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192 Japan kawakita@belle.shiga-med.ac.jp

Abstract. We define two families of sextics. By computer search on one family, we find new curves of genus 5 attaining the Hasse–Weil– Serre bound over \mathbb{F}_{71} , \mathbb{F}_{191} and \mathbb{F}_{115} , and we update 3 entries of genus 5 in manYPoints.org. Among another family, we find new curves of genus 7 attaining the Hasse–Weil–Serre bound over \mathbb{F}_{p^3} for some primes p. We determine the precise condition on the finite field over which the sextics attain the Hasse–Weil–Serre bound.

Keywords: Algebro-geometric codes · Rational points · Serre bound.

1 Introduction

Goppa discovered algebro-geometric codes in 1970s, where we can construct efficient codes from explicit curves with many rational points; see [11]. For a curve C of genus g(C) over a finite field \mathbb{F}_q , we have the Hasse–Weil bound $\#C(\mathbb{F}_q) \leq q+1+2g(C)\sqrt{q}$. A curve attaining this bound is said to be maximal. Here p is a prime number and q is a power of p, $\#C(\mathbb{F}_q)$ is the number of rational points of C over \mathbb{F}_q . By a curve we mean a projective geometrically irreducible nonsingular curve. In 1983, Serre improved this bound as $\#C(\mathbb{F}_q) \leq$ $q+1+g(C)\lfloor 2\sqrt{q} \rfloor$, which we call the Serre bound. Here $\lfloor \cdot \rfloor$ means round down.

Many properties of maximal curves have been widely investigated; see [2], [4] and references therein. However, this is not the case of non-maximal curves attaining the Serre bound with its genera ≥ 4 . There are known only examples of genera 4 and 10 in [6], genus 6 in [7–9], genus 11 in [10].

The purpose of this research is to find more explicit examples. In the process of studying the sextics in [7,8], we get an idea to define two families of sextics in Section 2 and 4. Among them by computer search, we find new non-maximal curves of genera 5 and 7 attaining the Serre bound in Section 3 and 5 respectively.

2 A family of sextics of genus ≤ 5

Let k be a field of characteristic $p \neq 2, 3, 5$ in this section, and \bar{k} be its algebraic closure.

^{*} Partially supported by JSPS Grant-in-Aid for Scientific Research (C) 17K05344.

Definition 1. We set a sextic C over a field k with the following equation:

$$x^3y^3 + x^5 + y^5 + ax^2y^2 + bxy + c = 0,$$

where $a, b, c \in k$ and $c \neq 0$.

Let J_C be the Jacobian variety of a curve C. Theorem B of [5] plays an important role when we decompose a Jacobian variety of a curve in this article.

Theorem 1. (Theorem B, [5]) Given a curve X, let $G \leq \operatorname{Aut}(X)$ be a finite group such that $G = H_1 \cup \cdots \cup H_m$ where the subgroups H_i satisfy $H_i \cap H_j = 1_G$ if $i \neq j$. Then we have the following isogeny relation

$$J_X^{m-1} \times J_{X/G}^g \sim J_{X/H_1}^{h_1} \times \dots \times J_{X/H_m}^{h_m}$$

where g = |G| and $h_i = |H_i|$ and J_r means the product of J with itself r times.

Proposition 1. Assume that there exists $\zeta \in k$, such that $\zeta^5 = 1$. The Jacobian variety of C decomposes over k have the following isogeny relation

$$J_C \sim J_{C_{\sigma}}^2 \times J_{C_{\tau}}$$

where $C_{\sigma}: f(x,y) = 0$ and $C_{\tau}: y^2 = h(x)$ with

$$f(x, y) = x^{5} - 5x^{3}y + 5xy^{2} + y^{3} + ay^{2} + by + c,$$

$$h(x) = (x^{3} + ax^{2} + bx + c)^{2} - 4x^{5}.$$

Proof. For $\sigma: (x, y) \mapsto (y, x)$, we have the quotient as

$$C/\langle \sigma \rangle : x^5 - 5x^3y + 5xy^2 + y^3 + ay^2 + by + c = 0.$$

For $\tau : (x, y) \mapsto (\zeta x, \zeta^{-1}y)$, we have

$$C/\langle \tau \rangle : x^{2} + (y^{3} + ay^{2} + by + c)x + y^{5} = 0,$$

which is birational equivalent to $y^2 = (x^3 + ax^2 + bx + c)^2 - 4x^5$.

Set $G = \langle \sigma, \tau \rangle$. We have $G = \langle \sigma \rangle \cup \langle \tau \rangle \cup \langle \sigma \tau^2 \rangle \cup \langle \sigma \tau^3 \rangle \cup \langle \sigma \tau^4 \rangle$. From Theorem 1,

$$J_C^5 \times J_{C/G}^{10} \sim J_{C/\langle\sigma\rangle}^2 \times J_{C/\langle\tau\rangle}^5 \times J_{C/\langle\sigma\tau\rangle}^2 \times J_{C/\langle\sigma\tau^2\rangle}^2 \times J_{C/\langle\sigma\tau^3\rangle}^2 \times J_{C/\langle\sigma\tau^4\rangle}^2.$$

The genus of C/G is 0. Further $C/\langle \sigma \tau^i \rangle$ for i = 1, 2, 3, 4 are birational equivalent to $C/\langle \sigma \rangle$, therefore $J_C \sim J_{C/\langle \sigma \rangle}^2 \times J_{C/\langle \tau \rangle}$. Setting $C/\langle \sigma \rangle$ and $C/\langle \tau \rangle$ as C_{σ} and C_{τ} respectively, which completes the proof.

Corollary 1. Let $q = 1 \pmod{5}$. We have that

$$#C(\mathbb{F}_q) = 2#C_{\sigma}(\mathbb{F}_q) + #C_{\tau}(\mathbb{F}_q) - 2q - 2.$$

Proof. It is well known that $\#C(\mathbb{F}_q) = q+1-t$, where t is the trace of Frobenius acting on a Tate module of J_C . Proposition 1 implies that this Tate module is isomorphic to a direct sum of two copies of the Tate module of $J_{C_{\sigma}}$ and C_{τ} . Hence $t = 2t_1 + t_2$, where t_1 and t_2 are the trace of Frobenius on the Tate module of $J_{C_{\sigma}}$ and C_{τ} . Hence t = $2t_1 + t_2$, where t_1 and t_2 are the trace of Frobenius on the Tate module of $J_{C_{\sigma}}$ and C_{τ} respectively. Since $t_1 = q + 1 - \#C_{\sigma}(\mathbb{F}_q)$ and $t_2 = q + 1 - \#C_{\tau}(\mathbb{F}_q)$, the result follows.

For polynomials u(x) and v(x), we set the resultant Res(u, v) as the determinant of the Sylvester matrix.

Lemma 1. Let α , β be roots of $1 - 3x + x^2 = 0$ in \overline{k} , $f_y(x, y)$ be the partial derivative of f with respect to y. Set $u_\alpha(x) = f(x, \alpha x^2)$, $v_\alpha(x) = f_y(x, \alpha x^2)$. If $\operatorname{Res}(u_\alpha, v_\alpha) = \operatorname{Res}(u_\beta, v_\beta) = 0$, then the genus $g(C_\sigma) \leq 2$.

Proof. The infinity of C_{σ} is a singular point, hence the genus $g(C_{\sigma}) \leq 4$. If $\operatorname{Res}(u_{\alpha}, v_{\alpha}) = 0$, then there exists $s \in \bar{k}$, such that $u_{\alpha}(s) = v_{\alpha}(s) = 0$. It means that $f(s, \alpha s^2) = f_y(s, \alpha s^2) = 0$. The partial derivative of f with respect to x is $f_x(x, y) = 5(x^4 - 3x^2y + y^2)$. Thus $f_x(s, \alpha s^2) = 0$, which means that $(s, \alpha s^2)$ is a singular point on the affine piece. Similarly, if $\operatorname{Res}(u_{\beta}, v_{\beta}) = 0$ then there exists another singular point $(t, \beta t^2)$ on the affine piece. Therefore the genus $g(C_{\sigma}) \leq 2$.

Lemma 2. Set h'(x) as the differentiation of h(x). If $\operatorname{Res}(h, h') = 0$, then the genus $g(C_{\tau}) \leq 1$.

Proof. If $\operatorname{Res}(h, h') = 0$, then there exists $s \in \overline{k}$ such that $h(x) = (x - s)^2 h_1(x)$ where deg $h_1 = 4$. Hence C_{τ} is birational to $y^2 = h_1(x)$, which means $g(C_{\tau}) \leq 1$.

Proposition 2. If $\operatorname{Res}(u_{\alpha}, v_{\alpha}) = \operatorname{Res}(u_{\beta}, v_{\beta}) = \operatorname{Res}(h, h') = 0$, then the genus $g(C) \leq 5$.

Proof. From Proposition 1, we have that $g(C) = 2g(C_{\sigma}) + g(C_{\tau})$. Lemma 1 and 2 imply the result immediately.

We remark that the condition of Proposition 2 is simple to implement in computer search.

3 Curves of genus 5 attaining the Serre bound

We search by MAGMA [1] among C over \mathbb{F}_q for $q \equiv 1 \pmod{5}$, under the condition of Proposition 2, using Corollary 1. New curves of genus 5 are found, which update three entries in [3], whom we list in Table 1. In [3] the tables record for a pair (q, g) an entry $\alpha - \beta$ where β is the best upper bound for the maximum number of points of a curve of genus g over \mathbb{F}_q and α gives a lower bound obtained from an explicit example of a curve defined over \mathbb{F}_q with α (or at least α) rational points.

Example 1. $x^3y^3 + x^5 + y^5 + 2x^2y^2 + 4xy + 25 = 0$ has 82 rational points over \mathbb{F}_{31} .

4 Motoko Qiu Kawakita

Table 1. Curves of genus 5 with many points

\mathbb{F}_q	$\#C(\mathbb{F}_q)$	old entry
31	82	-82
71	152	-152
11^{5}	165062	-165062

Example 2. The sextic C attains the Serre bound over \mathbb{F}_q , when (q, a, b, c) = (71, 4, 46, 36), (191, 134, 126, 2), (11⁵, 10, 9, 10).

Simultaneously, we find maximal curves of genus 5.

Example 3. The sextic C is maximal over \mathbb{F}_{p^2} , when (p, a, b, c) = (29, 17, 28, 28), (31, 1, 3, 7), (41, 28, 29, 31), (59, 9, 16, 28), (61, 11, 9, 10), (71, 0, 62, 64), (79, 5, 10, 12), (89, 8, 20, 8), (101, 46, 89, 38), (109, 4, 87, 7), (131, 0, 107, 97), (139, 2, 43, 122), (149, 5, 43, 59), (151, 5, 41, 115), (179, 7, 152, 90), (181, 67, 41, 18), (191, 2, 9, 17), (199, 17, 196, 24), etc.

We list them in Table 2. We note that we practice for $p \leq 269$ in this case.

Table 2. Maximal curves of genus 5 over \mathbb{F}_{p^2}

7	11	13	17	19	23	29	31	37
						\mathbf{C}	\mathbf{C}	
41	43	47	53	59	61	67	71	73
\mathbf{C}				\mathbf{C}	\mathbf{C}		\mathbf{C}	
79	83	89	97	101	103	107	109	113
\mathbf{C}		\mathbf{C}		\mathbf{C}			\mathbf{C}	
127	131	137	139	149	151	157	163	167
	\mathbf{C}		С	\mathbf{C}	С			
173	179	181	191	193	197	199		
	\mathbf{C}	\mathbf{C}	\mathbf{C}			\mathbf{C}		

From Table 2, we have a conjecture.

Conjecture 1. Let p > 23. If $p \equiv \pm 1 \pmod{5}$, then there exists a sextic C of genus 5, which is maximal over \mathbb{F}_{p^2} .

4 A family of sextics of genus 7

Let k be a field of characteristic $p \neq 2, 3$ in this section.

Definition 2. We set a sextic W over k with the following equation:

$$x^{4}y^{2} + y^{4} + x^{2} + x^{2}y^{4} + y^{2} + x^{4} + bx^{2}y^{2} = 0,$$

where $b \in k$.

We decompose the Jacobian variety, where the idea comes from Proposition 10 in [7].

Proposition 3. The sextic W over a field k have the following isogeny relation:

$$J_W \times H_2^2 \sim J_H^3$$
,

where the curves are defined by

$$H_2: x^2y + y^2 + x + xy^2 + y + x^2 + bxy = 0,$$

$$H: x^2y^2 + y^4 + x + xy^4 + y^2 + x^2 + bxy^2 = 0.$$

Proof. Since $\sigma : (x, y) \mapsto (-x, y), \tau : (x, y) \mapsto (x, -y)$ are automorphisms of W, from Theorem 1, we have that

$$J_W \times J_{W/\langle\sigma,\tau\rangle}^2 \sim J_{W/\langle\sigma\tau\rangle} \times J_{W/\langle\sigma\rangle} \times J_{W/\langle\tau\rangle}.$$

 $W/\langle \sigma, \tau \rangle$ is birational equivalent to H_2 . Further, $W/\langle \sigma \tau \rangle$, $W/\langle \sigma \rangle$ and $W/\langle \tau \rangle$ are birational equivalent to H, which show the isogeny relation.

Afterward, set $b \neq 2, 3, -6$.

Proposition 4. The jacobian variety of the curve H over a field k have the following isogeny relation:

$$J_H \sim E_1 \times E_2 \times E_3,$$

where the elliptic curves $E_i: y^2 = xf_i(x)$ for i = 1, 2, 3 are given by

$$f_1(x) = x^2 - bx - (b - 3),$$

$$f_2(x) = (x - 1)(x - (b - 2)),$$

$$f_3(x) = x^2 + (b^2 - 12)x - 16(b - 3).$$

Proof. Since $\sigma: (x, y) \mapsto (x/y^2, 1/y), \tau: (x, y) \mapsto (x, -y)$ are automorphisms of H, from Theorem 1, we have

$$J_H \times J_{H/\langle\sigma,\tau\rangle}^2 \sim J_{H/\langle\sigma\tau\rangle} \times J_{H/\langle\sigma\rangle} \times J_{H/\langle\tau\rangle}.$$

Now, an explicit quotient map $H \to H/\langle \sigma \tau \rangle$ is given by

$$(x,y) \mapsto (x+x/y^2, y-1/y),$$

where one gets

$$H/\langle \sigma \tau \rangle : x^{2} + xy^{2} + bx + 2x + y^{2} + 4 = 0,$$

6 Motoko Qiu Kawakita

which is birational equivalent to E_1 .

Next, an explicit quotient map $H \to H/\langle \sigma \rangle$ is given by

$$(x,y) \mapsto (x/y, y+1/y)$$

where we have

$$H/\langle \sigma \rangle : -(x^3 + y^3 - 3y) + (x + y)(x^2 + y^2 - 2) + bx = 0,$$

which is birational equivalent to E_2 .

 $H/\langle \tau \rangle$ is birational equivalent E_3 , and the genus of $H/\langle \sigma, \tau \rangle$ is 0, which give the desired result.

Theorem 2. The sextic W over a field k have the following isogeny relation

$$J_W \sim E_1^3 \times E_2^3 \times E_3.$$

And the genus g(W) = 7.

Proof. H_2 is birational equivalent to E_3 , hence Proposition 3 and 4 show the result. Moreover, E_1 , E_2 and E_3 are nonsingular when $b \neq 2, 3, -6$.

Corollary 2. We have that

$$#W(\mathbb{F}_q) = 3#E_1(\mathbb{F}_q) + 3#E_2(\mathbb{F}_q) + #E_3(\mathbb{F}_q) - 6q - 6.$$

Proof. It is well known that $\#W(\mathbb{F}_q) = q+1-t$, where t is the trace of Frobenius acting on a Tate module of J_W . Theorem 2 implies that this Tate module is isomorphic to a direct sum of three copies of the Tate module of E_1 , E_2 and E_3 . Hence $t = 3t_1 + 3t_2 + t_3$, where t_1 , t_2 and t_3 are the trace of Frobenius on the Tate module of E_1 , E_2 and E_3 respectively. Since $t_i = q + 1 - \#E_i(\mathbb{F}_q)$ for i = 1, 2, 3, the result follows.

Note that the *j*-invariants of E_1 , E_2 , E_3 are respectively

$$\frac{2^8(b^2+3b-9)^3}{(b-2)(b-3)^2(b+6)}, \quad \frac{2^8(b^2-5b+7)}{(b-2)^2(b-3)^2}, \quad \frac{b^3(b^3-24b+48)^3}{(b-2)^3(b-3)^2(b+6)}.$$

5 Curves of genus 7 attaining the Serre bound

We search by MAGMA [1] among W over \mathbb{F}_q , using Corollary 2. For an elliptic curve E, we implement the next algorithm to compute n_i with $i \geq 2$ from n_1 , where $n_i = \#E(\mathbb{F}_{p^i})$. It is based on the theory of Zeta function.

Algorithm. INPUT: n_1 , i. OUTPUT: n_2 , n_3 , \cdots , n_i . 1. $a_1 \leftarrow p + 1 - n_1$. 2. $a_2 \leftarrow a_1^2 - 2p$. 3. $n_2 \leftarrow p^2 + 1 - a_2$. 4. for j = 3 to i do: $a_j \leftarrow a_1 a_{j-1} - pa_{j-2}$. $n_j \leftarrow p^j + 1 - a_j$.

5. Return n_2, n_3, \dots, n_i .

We find curves of genus 7 attaining the Serre bound.

Example 4. The sextic W is maximal over \mathbb{F}_{p^2} , when (p, b) = (23, 13), (47, 26), (71, 1), (167, 137), (191, 45), (239, 27), (263, 87), (383, 358), (431, 267), (479, 309), etc.

We note that we practice for $p \leq 99991$ in this case.

Afterward we consider the finite field \mathbb{F}_p as $\mathbb{Z}/(p)$, which is the residue classes of the integers modulo the ideal generated by a prime p. Set m = (p-1)/2. Denote the coefficients of x^m in $f_i(x)^m$ by \overline{A}_i for i = 1, 2, 3, which means that

$$\overline{A}_{1} = \sum_{i=0}^{\lfloor \frac{m}{2} \rfloor} \frac{m!}{(i!)^{2}(m-2i)!} (-1)^{m-i} b^{m-2i} (b-3)^{i},$$

$$\overline{A}_{2} = H_{p}(b-2) = \sum_{i=0}^{m} {\binom{m}{i}}^{2} (b-2)^{i},$$

$$\overline{A}_{3} = \sum_{i=0}^{\lfloor \frac{m}{2} \rfloor} \frac{m!}{(i!)^{2}(m-2i)!} (-16)^{i} (b^{2}-12)^{m-2i} (b-3)^{i}.$$

Theorem 3. Let $b \in \mathbb{F}_p$. W is maximal over \mathbb{F}_{p^2} if and only if

$$\overline{A}_1 \equiv \overline{A}_2 \equiv \overline{A}_3 \equiv 0 \pmod{p}.$$

Proof. It follows from Section V.4 of [12] and Theorem 2.

Example 5. The sextic W attaining the Serre bound over \mathbb{F}_{p^3} , when (p, b) = (21313, 3663), (30269, 10886), (61519, 56766), (76163, 6230), etc.

We note that we practice for $p \leq 131363$ in this case.

For $\overline{A} \in \mathbb{F}_p$, set A as the integer such that $\overline{A} \equiv A \pmod{p}$ and $0 \le A < p$.

Theorem 4. Let $p \ge 11$ and $b \in \mathbb{F}_p$. W over \mathbb{F}_{p^3} attains the Serre bound if and only if

$$A_1^3 - 3pA_1 = A_2^3 - 3pA_2 = A_3^3 - 3pA_3 = -\lfloor 2p\sqrt{p} \rfloor.$$

Proof. It follows from Theorem 4 in [7] and Theorem 2.

7

8 Motoko Qiu Kawakita

Acknowledgements

The author wishes to express her thanks to Massimo Giulietti, Gary McGuire, Maria Montanucci and Carlos Moreno for their valuable comments on this research.

References

- Bosma, W., Cannon, J., Playoust C.: The Magma algebra system. I. The user language, J. Symbolic Comput. 24, 235–265 (1997)
- Garcia, A., Güneri, G., Stichtenoth, H.: A generalization of the Giulietti– Korchmáros maximal curve, Adv. Geom. 10(3), 427–434 (2010)
- 3. van der Geer, G., Howe, E., Lauter, K., Ritzenthaler, C.: Table of curves with many points, http://www.manypoints.org
- 4. Giulietti, M., Montanucci, M., Zini, G.: On maximal curves that are not quotients of the Hermitian curve, Finite Fields Appl. **41**, 72-88 (2016)
- Kani, E., Rosen, M.: Idempotent relations and factors of Jacobians, Math. Ann. 284(2), 307–327 (1989)
- Kawakita, M.Q.: On quotient curves of the Fermat curve of degree twelve attaining the Serre bound, Int. J. Math. 20(5), 529-539 (2005)
- Kawakita, M.Q.: Wiman's and Edge's sextic attaining Serre's bound II, Algorithmic arithmetic, geometry, and coding theory, Contemp. Math. 637 191–203 (2015)
- Kawakita, M.Q.: Certain sextics with many rational points, Adv. Math. Commun. 11(2), 289-292 (2017)
- Kawakita, M.Q.: Wiman's and Edge's sextic attaining Serre's bound, Euro. J. Math. 4(1), 330–334 (2018)
- Miura, S.: Algebraic geometric codes on certain plane curves (in Japanese), IEICE Trans. Fundam. J75-A(11), 17351745 (1992)
- Moreno, C.: Algebraic curves over finite fields, Cambridge Tracts in Mathematics 97, Cambridge University Press, Cambridge (1991)
- 12. Silverman, J.H: The arithmetic of elliptic curves, 2nd Edition, Graduate Texts in Mathematics106, Springer, Heidelberg (2009)