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Abstract. MDS matrices are important components in the design of
linear diffusion layers of many block ciphers and hash functions. Re-
cently, there have been a lot of work on searching and construction of
lightweight MDS matrices, most of which are based on matrices of spe-
cial types over finite fields. Among all those work, Cauchy matrices and
Vandermonde matrices play an important role since they can provide
direct constructions of MDS matrices. In this paper, we consider con-
structing MDS matrices based on block Vandermonde matrices. We find
that previous constructions based on Vandermonde matrices over finite
fields can be directly generalized if the building blocks are pairwise com-
mutative. Different from previous proof method, the MDS property of
a matrix constructed by two block Vandermonde matrices is confirmed
adopting a Lagrange interpolation technique, which also sheds light on
a relationship between it and an MDS block Cauchy matrix. Those con-
structions generalize previous ones over finite fields as well, but our proofs
are much simpler. Furthermore, we present a new type of block matrices
called block Cauchy-like matrices, from which MDS matrices can also be
constructed. More interestingly, those matrices turn out to have relations
with MDS matrices constructed from block Vandermonde matrices and
the so-called reversed block Vandermonde matrices. For all these con-
structions, we can also obtain involutory MDS matrices under certain
conditions. Computational experiments show that lightweight involutory
MDS matrices can be obtained from our constructions.

Keywords: MDS matrix · involutory matrix · block Vandermonde ma-
trix · block Cauchy-like matrix

1 Introduction

In the design of modern cryptographic primitives, confusion and diffusion are
two basic requirements and they are defined by Claude Shannon [27]. Confusion
means that every character of the ciphertext should depend on several parts of
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the plaintext and the key, obscuring the connections between them; diffusion
means that changing a single character of the input will influence many char-
acters of the output. In general, the confusion layers of a cipher are non-linear
substitutions, while the diffusion layers are linear permutations. Focusing on the
diffusion layer, the branch number of it can be used to estimate the number of
actives S-boxes in differential and linear analysis of, for example, a two-round
SPN cipher, thus reflecting the ability of a cipher to resist these two main crypt-
analysis methods and to some extent, the diffusion power. Therefore, a security
design target of a diffusion layer is to make its branch number as large as possible,
and this is usually known as the “wide trail” design strategy [8]. Linear diffusion
layers achieving maximal branch numbers are called MDS (maximal distance
separable), and the matrices representing them are called MDS matrices. Such
matrices are used in the design of many block ciphers and Hash functions such
as AES [25], SHARK [26], Anubis [24], Twofish [31], Maelstrom [12] and Grφstl
[14]. In addition, they also have deep relationships with MDS codes in coding
theory.

In recent years, there has been a lot of work on finding MDS matrices. Some
designers directly search them from special matrices such as circulant matri-
ces [21, 22], Hadamard matrices [28], Toeplitz matrices [30], etc. We call this
a structured searching approach. An obvious advantage of these types of ma-
trices is that all of their rows are similar, thus can reduce the search space.
However, it is difficult to check the MDS properties of them in the searching
process. Therefore, instead of structured searching, some other designers devote
to directly constructing MDS matrices. With this approach, Cauchy matrices [7,
11, 34], Vandermonde matrices [20, 29], rotational-XOR matrices [15] and some
matrices obtained from certain famous MDS codes such as BCH codes [2, 13],
Gabidulin codes [4], etc., play an improtant role. An advantage of this way is
that they can obtain MDS matrices of arbitrary dimension.

With the rapid development of lightweight cryptography, good hardware ef-
ficiency has become an important design goal. In order to save implementation
costs, the MDS matrices used in the design of a cipher should also be as light as
possible. A commonly and most frequently used metric to evaluate the weight of
a matrix is its XOR count [19], which roughly speaking is the number of XOR
operations needed to perform multiplication of the matrix with any vector (this
is called the d-XOR count in [17]). After this, [5] proposed the idea of reusing
intermediate results to decrease the XOR count, resulting in a new metric called
s-XOR count [17]. Very recently, Kranz et al. [18] presented a new technique to
further optimize the implementation costs based on shorter linear straight-line
programs for MDS matrices. In this paper, we focus on theoretical constructions,
so we only compute the s-XOR count to assure the validity of our theoretical
results. In addition to these quantitative metrics, some other strategies are also
adopted to save implementation costs, and this is often achieved by imposing
new structures on the MDS matrices. For example, in the design of the PHOTON
family of Hash function [9] and the LED block cipher [10], Guo et al. proposed
to use recursive MDS matrices, which can be implemented by linear feedback
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shift registers (LFSRs). Another important idea is to use involutory MDS matri-
ces. A matrix is called involutory if its inverse is itself. Obviously, this property
saves hardware gates in implementation because the same structure can be used
in both encryption and decryption. There were some work on constructing or
searching of involutory MDS matrices. For example, as early as in 1997, Youssef
et al. [34] provided a method to construct involutory MDS matrices with Cauchy
matrices. After that, some other special matrices including Vandermonde matri-
ces [29], (generalized) circulant matrices [21, 22] and Hadamard matrices [22, 28]
were adopted to find involutory MDS matrices. Notably, [29] and [11] presented
novel ideas on constructing MDS involutions based on Vandermonde matrices
and Cauchy matrices over finite fields, respectively, and their constructions con-
tain involutory MDS Hadamard matrices. As a matter of fact, in the sense of
deriving involutory MDS Hadamard matrices, the work of [11] can be seen as
special cases of that of [29]. However, the approach to prove the main results in
[11] is much simpler than the one used in [29].

It should be pointed out that the MDS property is actually defined for block
matrices (see Definition 2 in Section 2) over the binary field F2, but most work
on constructing or searching of (involutory) MDS matrices is based on matrices
over a finite extension of F2 (see e.g., [7, 11, 13, 21, 28–30]). As we all know, every
element of a finite field F2m has a matrix representation over F2 of size m×m, so
those MDS matrices over F2m actually correspond to MDS block matrices over F2

with block size m×m. However, we also know that not every matrix over F2 can
represent an element of F2m (this depends on whether its minimal polynomial is
irreducible or not), so it seems that we will lose some MDS matrices (and maybe
some with good implementation features) when searching or constructing MDS
matrices only considering matrices over F2m . In fact, focusing on block matrices,
some designers can find MDS matrices with good properties [1, 22, 35] that may
not be obtained from matrices over finite fields. However, there are few papers
on this topic and little previous work on direct constructions of MDS block
matrices.

Our contribution. In this paper, we devote to constructing MDS matrices
and involutory MDS matrices from block matrices of special types. To simplify
the analysis and make use of the special structures of the matrices considered,
we only focus on those block matrices whose building blocks are pairwise com-
mutative. The contributions include the following:

– We define block Vandermonde matrices and prove that for two such ma-
trices V1 and V2, V1V

−1
2 turns out to be MDS or involutory MDS under certain

conditions, which generalizes the results of [20, 29]. However, for the involutory
construction the proof technique used in [20, 29] dost not work any more. We
proceed our proof based on Lagrange interpolation, and this technique can shed
light on the deeper structure of matrices of the form V1V

−1
2 . More precisely, we

find that V1V
−1
2 = D1CD2, where C is a block Cauchy matrix and D1, D2 are

two block diagonal matrices. As a result, it can be seen in a more simple and
clear way that under certain conditions involutory MDS matrices of the form
V1V

−1
2 coincide with those constructed from block Cauchy matrices;
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– We present a new type of block matrices called block Cauchy-like matri-
ces, from which MDS matrices can also be constructed. Most interestingly, those
matrices turn out to have relations with MDS matrices constructed as V1V

−1
2

where V1 and V2 are a block Vandermonde matrix and a reversed block Vander-
monde matrix, respectively. By a reversed block Vandermonde matrix, we mean
a matrix modified from a block Vandermonde matrix by reversing the order of
its block columns. By modifying the matrix V1V

−1
2 , involutory MDS matrices

can be obtained as well;
– For all our constructions of involutory MDS matrices, by choosing the

blocks to be polynomials of a given matrix, we can obtain pairwise commutative
blocks, and computational experiments show that lightweight involutory MDS
matrices exist. More precisely, we can find 4× 4 block matrices with block size
8× 8 that have XOR count 160 from the construction based on two block Van-
dermonde matrices, and have XOR count 151 from the construction based on a
block Vandermonde matrix and a reversed block Vandermonde matrix.

The rest of the paper is organized as follows. In Section 2, we give some basic
definitions and properties related to MDS matrices and their XOR counts. After
that we briefly introduce some properties of Cauchy matrices and Vandermonde
matrices over an arbitrary field. In Section 3, we construct MDS matrices and
involutory MDS matrices with block Vandermonde matrices and block Cauchy-
like matrices. Concluding remarks are given in Section 4.

2 Preliminaries

In this section, we first give some notations that will be used throughout the
paper. Secondly, we give the definition of MDS matrices and some properties of
them. We also recall the definition of XOR count of a matrix. At last, we simply
state some properties of Cauchy matrices and Vandermonde matrices.

In this paper, the matrices considered are all square matrices and a block
matrix means that the entries of the matrix are also matrices of a smaller di-
mension. The matrices Ai ∈ Mm(F2)(0 ≤ i ≤ n− 1) are pairwise commutative
that imply AiAj = AjAi for all 0 ≤ i, j ≤ n− 1.

2.1 Notations

2.2 MDS matrices and their properties

Given a vector v = (v0, v1, · · · , vn−1)T ∈ (Fm2 )n, where each component vTi ∈ Fm2
(0 ≤ i ≤ n−1) is also a vector, its bundle weight wtb(v) is defined as the number
of non-zero components. The branch number of an n× n diffusion matrix M is
defined as follows.

Definition 1 (See [23]). Let M be an n× n matrix over Mm(F2) (i.e., M is
an mn×mn block matrix with block size m×m). The differential branch number
of M is defined as

Bd (M) = min
v 6=0
{wtb(v) + wtb(Mv)} ,
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m: dimension of the blocks of a block matrix

n: dimension of the square matrix considered

Mi,j or M [i, j]: (i, j)-entry of an n× n matrix M, where 0 ≤ i, j ≤ n− 1

(Mi,j) or (M [i, j]): n× n matrix whose (i, j)-entry is Mi,j

det(M): determinant of a matrix M

F2: the binary finite field

F2m : the finite field with 2m elements

Mm(F2): matrix ring formed by all m×m matrices over F2
A
B

: matrix multiplication AB−1, where B is invertible

and the linear branch number of M is defined as

B` (M) = min
v 6=0

{
wtb(v) + wtb(M

T v)
}
.

For an n×n matrix M ′ over F2m , the definition of its branch number is similar
to Definition 1. It just needs to replace bundle weight by Hamming weight over
finite fields. It can be easily seen that an upper bound of Bd and B` of any matrix
is n+ 1. Thus we have:

Definition 2. An n × n matrix M over Mm(F2) is called an MDS matrix if
Bd(M) = B`(M) = n+ 1.

From the definition, we can see an MDS matrix has the maximal branch
number, so the diffusion layer designed from it is also called an optimal diffusion
layer. The following theorem is an important way to characterize MDS matrices
from a pure linear algebra point of view.

Theorem 1 (See [6]). An n× n matrix M over Mm(F2) is MDS if and only
if all square block sub-matrices of M are non-singular.

We can immediately have the following lemma from Theorem 1.

Lemma 1. Let M = (Mi,j) be an n × n MDS matrix over Mm(F2), and D =
diag(D0, D1, . . . , Dn−1) be a block diagonal matrix overMm(F2). If det(D) 6= 0,
then D ·M and M ·D are MDS matrices.

Proof. Since det(D) 6= 0, we have det(Di) 6= 0, 0 ≤ i ≤ n−1. Since D is a block
diagonal matrix and M is an MDS matrix, for any k× k(1 ≤ k ≤ n) sub-matrix
of D ·M, we have

det


Di0Mi0,j0 · · · Di0Mi0,jk−1

Di1Mi1,j0 · · · Di1Mi1,jk−1

...
...

Dik−1
Mik−1,j0 · · · Dik−1

Mik−1,jk−1


= det(Di0) det(Di1) · · · det(Dik−1

) det(Mk×k) 6= 0,

where Mk×k is a k × k sub-matrix of M . This shows any k × k sub-matrix of
D ·M is non-singular, thus D ·M is an MDS matrix by Theorem 1. Similarly,
we also have M ·D is an MDS matrix.
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Theorem 1 provides a general way to check whether a matrix is MDS or not,
but it may not be so efficient. Especially for a block matrix over Mm(F2), a
k× k sub-matrix is actually a km× km matrix over F2, and we should compute
determinant of this matrix. However, when the blocks of a matrix are pairwise
commutative, we can compute the determinants of sub-matrices in a simpler
manner thanks to the following theorem.

Lemma 2 (See [32]). Let F be a field and A = (ai,j) be an n×n matrix, where
ai,j ∈Mm(F) are pairwise commutative, 0 ≤ i, j ≤ n− 1 . Then

det (A) = det

 ∑
j0···jn−1

(−1)
τ(j0···jn−1) a0,j0 · · · an−1,jn−1

 ,

where τ (j0 · · · jn−1) denotes the number of inverse-ordered pairs in the permu-
tation (j0 · · · jn−1) (an inverse-ordered pair is a pair whose number on the left
side is larger than its number on the right side).

Lemma 2 says that, if the entries of a block matrix overMm(F) are pairwise
commutative, or equivalently, the matrix is defined over a commutative sub-
ring of the matrix ring Mm(F), we can compute its determinant by computing
the determinant of it as a matrix over this sub-ring firstly to obtain a matrix
in Mm(F) , and then computing determinant of this resulting matrix. This
lemma will help us a lot in our constructions of MDS matrices based on block
Vandermonde and Cauchy-like matrices.

2.3 XOR counts of matrices over F2

In 2014, the authors of [19] proposed using XOR count to estimate the imple-
mentation cost of cryptographic primitives. The XOR count of a matrix over F2

is the number of XOR operations of the matrix-vector multiplication, which is
called d-XOR count. Afterwards, [5] proposed the idea of reusing intermediate
results to decrease the XOR count, resulting a new metric called s-XOR count.
In this paper, we use the metric s-XOR count to calculate the implementation
cost of a matrix.

Definition 3. [5] An invertible matrix A has an s-XOR count of t over F2,
denoted by XOR(A) = t, if t is the minimal number such that A can be written
as

A = P

t∏
k=1

(I + Eik,jk)

with ik 6= jk for all k, where Eik,jk is the matrix with a unique non-zero element
1 at the (ik, jk-th entry, k ∈ {1, · · · , t}.

As an example, consider0 1 1
0 0 1
1 1 1

b1b2
b3

 =

 b2 ⊕ b1
b1

b3 ⊕ b2 ⊕ b1

 .
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We can reuse the intermediate result b2⊕ b1, so we get its s-XOR count is 2. For
the block matrices we consider the form

A =


A0,0 A0,1 · · · A0,n−1
A1,0 A1,1 · · · A1,n−1
...

...
...

...
An−1,0 An−1,1 · · · An−1,n−1


where Ai,j ∈ Mm(F2), 0 ≤ i, j ≤ n− 1, it can be easily derived that its s-XOR
count is

XOR(A) =

n−1∑
i,j=0

XOR(Ai,j) + n× (n− 1)×m. (1)

2.4 Cauchy matrix and Vandermonde matrix

Cauchy matrix and Vandermonde matrix are two important kinds of special ma-
trices in linear algebra. They both have the feature that their determinants can
be represented into nice formulas. If the elements appearing in the formulas are
pairwise distinct, then the determinants of them are non-zero. For simplification,
we only consider Cauchy and Vandermonde matrices over finite fields here.

Definition 4. Given x0, x1, . . . , xn−1 ∈ F2m and y0, y1, . . . , yn−1 ∈ F2m , such

that xi + yj 6= 0 for all 0 ≤ i, j ≤ n − 1, the matrix C = (ci,j) =
(

1
xi+yj

)
is

called a Cauchy matrix.

It is well known that the determinant of C is

det(C) =

∏
0≤i<j≤n−1 (xi + xj) (yi + yj)∏

0≤i,j≤n−1(xi + yj)
.

So if x′is and y′js are pairwise distinct for all 0 ≤ i, j ≤ n − 1, then det(C) 6= 0,
i.e. C is non-singular.

It is easy to see that any square sub-matrix of a Cauchy matrix is still a
Cauchy matrix, so we have the following proposition.

Proposition 1 (See [11]). For pairwise distinct xi, yj ∈ F2m (0 ≤ i, j ≤ n−1),
the Cauchy matrix C = ( 1

xi+yj
) is an MDS matrix.

Definition 5 (See [29]). The matrix

V = van(x0, x1, · · · , xn−1) =


1 x0 x20 · · · xn−10

1 x1 x21 · · · xn−11
...

...
...

...
...

1 xn−1 x
2
n−1 · · · xn−1n−1


is called a Vandermonde matrix, where xi ∈ F2m(0 ≤ i ≤ n− 1).
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It is well known the determinant of V is det(V ) =
∏

0≤i<j≤n−1(xi+xj), namely,
we have det(V ) 6= 0 if and only if all of xi(0 ≤ i ≤ n− 1) are distinct.

Proposition 2 (See [20]). Let V1 = van(x0, x1, · · · , xn−1) and V2 = van(y0, y1,
· · · , yn−1) be two n × n invertible Vandermonde matrices over F2m satisfying
xi 6= yj , 0 ≤ i, j ≤ n− 1. Then V1V

−1
2 is an MDS matrix.

Proposition 3 (See [29]). Notations and assumptions are the same with those
in Proposition 2 and further assume that xi = yi + r for some r ∈ F∗2m . Then
V1V

−1
2 is an involutory MDS matrix.

3 MDS matrices and involutory MDS matrices
constructed from block matrices

In this section, we construct MDS matrices and involutory MDS matrices from
block Vandermonde matrices and block Cauchy-like matrices.

3.1 (Involutory) MDS matrices from Block Vandermonde matrices

Before we construct MDS matrices, we first introduce some properties of block
Cauchy matrix.

Definition 6. Let A0, A1, . . . , An−1 and B0, B1, . . . , Bn−1 be m × m matrices
over F2 satisfying that Ai + Bj is non-singular for any 0 ≤ i, j ≤ n − 1. Then
the matrix C = ( I

Ai+Bj
) is called a block Cauchy matrix over Mm(F2).

Under certain conditions, applying Lemma 2, the determinant of a block
Cauchy matrix computed is similar to Cauchy matrix over finite field. We can
easily have the determinant of a block Cauchy matrix as follows.

Proposition 4. Let A0, A1, . . . , An−1, B0, B1, . . . , Bn−1 be m×m matrices over
F2 which are pairwise commutative, satisfying that Ai + Bj is non-singular for
any 0 ≤ i, j ≤ n − 1. Then the determinant of the block Cauchy matrix C =
( I
Ai+Bj

) is

det(C) =

∏
0≤i<j≤n−1 det (Ai +Aj) det (Bi +Bj)∏

0≤i,j≤n−1 det(Ai +Bj)
.

.

By Proposition 4 and Theorem 1, we can give a construction of MDS matrices
with block Cauchy matrices as follows.

Theorem 2. Assume {A0, . . . , An−1, B0, . . . , Bn−1} is a set of m×m matrices
over F2 which are pairwise commutative, and the sum of any two elements of it
is non-singular. Then the block Cauchy matrix C = ( I

Ai+Bj
) is an MDS matrix.
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Proof. From the definition of a block Cauchy matrix, it is obvious any square
sub-matrix of it is still a block Cauchy matrix. It is clear from Proposition 4 that
all sub-matrices of C are non-singular under the conditions of this theorem.

In [29], the authors construct MDS matrices with Vandermonde matrices
over finite fields. In the following we consider the construction of MDS matrices
with block Vandermonde matrices.

Definition 7. The matrix

V = V an(A0, A1, · · · , An−1) =


I A0 A2

0 · · · An−10

I A1 A2
1 · · · An−11

...
...

...
...

...
I An−1 A

2
n−1 · · · An−1n−1


is called a block Vandermonde matrix, where Ai ∈Mm(F2)(0 ≤ i ≤ n− 1).

Now we give the construction of an MDS matrix with two block Vandermonde
matrices.

Theorem 3. Let V1 = V an(A0, A1, · · · , An−1) and V2 = V an(B0, B1, · · · , Bn−1)
be two block Vandermonde matrices, where Ai, Bj ∈ Mm(F2), 0 ≤ i, j ≤ n − 1,
are commutative and the sum of any two of them is non-singular. Then V =
V1V

−1
2 is an MDS matrix.

Proof. Assume the inverse of V2 is V −12 = (Si,j), where Si,j ∈ Mm(F2), 0 ≤
i, j ≤ n− 1. Then we have

V2V
−1
2 [i, j] =

n−1∑
k=0

Sk,jB
k
i =

{
0 i 6= j
I i = j.

Let pj(X) =
∑n−1
k=0 Sk,jX

k be a matrix polynomial. Then we can see that pj(X)
is actually the Lagrange interpolation polynomial, that is,

pj(X) =

n−1∑
k=0

Sk,jX
k =

n−1∏
k=0
k 6=j

X +Bk
Bj +Bk

. (2)

Therefore, we have

V1V
−1
2 [i, j] =

n−1∑
k=0

Sk,jA
k
i = pj(Ai) =

n−1∏
k=0
k 6=j

Ai +Bk
Bj +Bk

. (3)

Let C = ((Ai+Bj)
−1), which is a block Cauchy matrix. LetD1 = diag(

∏n−1
k=0(A0+

Bk),
∏n−1
k=0(A1+Bk), · · · ,

∏n−1
k=0(An−1+Bk)) andD2 = diag(

∏n−1
k=1(B0+Bk)−1,

∏n−1
k=0
k 6=1

(B1+
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Bk)−1, · · · ,
∏n−2
k=0(Bn−1 +Bk)−1) be two block diagonal matrices. Then we have

D1CD2[i, j] =

n−1∏
k=0

(Ai+Bk)(Ai+Bj)
−1

n−1∏
k=0
k 6=j

(Bj+Bk)−1 =

n−1∏
k=0
k 6=j

Ai +Bk
Bj +Bk

= V1V
−1
2 [i, j]

Since Ai +Bj , Ai +Ak, Bi +Bk, 0 ≤ i, j, k ≤ n− 1 and i 6= k, are non-singular,
we know the block Cauchy matrix C is MDS, and det(D1) 6= 0 and det(D2) 6= 0.
From Lemma 1, we know V = V1V

−1
2 = D1CD2 is an MDS matrix.

Theorem 3 is a direct generalization of the result over finite fields given in [29].
However, our proof technique is quite different from the one used in [29]. In fact,
the MDS property is confirmed by computing the branch number in [29]. The

main argument is based on the basic fact that the polynomial p(x) =
∑n−1
i=0 pix

i

has at most n − 1 different roots in any finite field, where pi ∈ F2m . However,
following this approach to prove our result of Theorem 3, we will meet some
difficulties since it seems we do not have such argument that the polynomial
P (X) =

∑n−1
i=0 PiX

i has at most n − 1 roots, which are m × m matrices over
F2, where Pi ∈ Fm2 . Therefore, we provide a new method to prove Theorem 3.
The advantage of this approach is that it can reflect the deeper structure of the
matrix V1V

−1
2 for two block Vandermonde matrices V1, V2.

Based on Theorem 3, we can easily obtain the following theorem.

Theorem 4. The matrix V of Theorem 3 is an involutory MDS matrix if Bi =
Ai +R, where R ∈Mm(F2) and R 6= Ai, i = 0, 1, . . . , n− 1.

Proof. From (3) and Bi = Ai +R, we know

V1V
−1
2 [i, j] =

n−1∏
k=0
k 6=j

Ai +Bk
Bj +Bk

=

n−1∏
k=0
k 6=j

Ai +R+Ak
Aj +R+Ak +R

=

n−1∏
k=0
k 6=j

Bi +Ak
Aj +Ak

.

Similarly we have

V2V
−1
1 [i, j] =

n−1∏
k=0
k 6=j

Bi +Ak
Aj +Ak

,

which is equal to V1V
−1
2 [i, j]. So the matrix V = V1V

−1
2 is an involutory MDS

matrix.

We need to notice that the elements used to form the block Vandermonde
matrices in the above constructions should be pairwise commutative and the
sum of any two of them should be non-singular. It seems difficult to find such
kind of elements in the matrix ring. However, we can give a simple way to deal
with this problem by considering matrix polynomials. More precisely, we replace
Ai, Bj , R, 0 ≤ i, j ≤ n − 1 with fi(B), gj(B), r(B), 0 ≤ i, j ≤ n − 1, where
B ∈ Mm(F2) and fi(x), gj(x), r(x) ∈ F2[x]. Now naturally they are pairwise
commutative. In order to ensure that fi(B) + fk(B), gi(B) + gk(B), fi(B) +
gj(B), 0 ≤ i, j, k ≤ n − 1 and i 6= k, are non-singular, we need the following
proposition [35].
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Proposition 5 (See [35]). Let F be a field, B ∈ Mm (F) ,mB(x) be the min-
imal polynomial of B , and g (x) ∈ F[x]. Then det(g(B)) 6= 0 if and only if
GCD(g(x),mB(x)) = 1, where GCD(g(x),mB(x)) denotes the greatest common
divisor of g(x) and mB(x).

According to Proposition 5, we construct the desired Ai, Bj , R, 0 ≤ i, j ≤
n− 1 of Theorem 4 by replacing them with fi(B), gj(B), r(B), 0 ≤ i, j ≤ n− 1,
where B ∈ Mm(F2) and fi(x), gj(x), r(x) ∈ F2[x]. As an example, we give a
4× 4 involutory block MDS matrix over M8 (F2) as follows.

Example 1. Let f0(x) = 1, f1(x) = x7 + x3 + x2 + 1, f2(x) = x7 + x2, f3(x) =
x3, r(x) = 1 and mB(x) = x8+x7+x5+x4+x3+x+1 = (x4+x+1)(x4+x3+1).
Then we obtain an involutory block MDS matrix V by Theorem 4 for

B =



0 1 0 0 0 1 1 0
1 1 0 0 1 1 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 1 0 0 1
1 1 0 1 0 1 1 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


. (4)

The XOR count of V is 160.

It is worth noting that the minimal polynomial mB(x) in Example 1 is a
reducible polynomial. If the minimal polynomial mB(x) is an irreducible poly-
nomial, then the matrixB will be similar to a matrix representation of an element
of the finite field F28 .

3.2 (Involutory) MDS matrices from Block Cauchy-like matrix

In this section, we will give a new structure to construct MDS matrices and
involutory MDS matrices.

Definition 8. Let A0, A1, . . . , An−1 and B0, B1, . . . , Bn−1 be m × m matrices
over F2 satisfying that I + AiBj is non-singular for any 0 ≤ i, j ≤ n− 1. Then
the matrix T = ( I

I+AiBj
) is called a block Cauchy-like matrix over Mm(F2).

We find that block Cauchy-like matrices share some beautiful features with
block Cauchy matrices. For example, any square sub-matrix of a block Cauchy-
like matrix is still a block Cauchy-like matrix; the determinant of a block Cauchy-
like matrix computed is similar to block Cauchy matrix, so we have the following
proposition.

Proposition 6. Let A0, A1, . . . , An−1, B0, B1, . . . , Bn−1 be m×m matrices over
F2 which are pairwise commutative, satisfying that I +AiBj is non-singular for
any 0 ≤ i, j ≤ n − 1. Then the determinant of the block Cauchy-like matrix
T = ( I

I+AiBj
) is

det(T ) =

∏
0≤i<j≤n−1 det (Ai +Aj) det (Bi +Bj)∏

0≤i,j≤n−1 det(I +AiBj)
.
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Theorem 5. Assume {A0, . . . , An−1, B0, . . . , Bn−1} is a set of m×m matrices
over F2 which are pairwise commutative, and I + AiBj , (0 ≤ i, j ≤ n − 1) and
Ai+Ak, Bi+Bk, (0 ≤ i < k ≤ n−1) are non-singular. Then the block Cauchy-like
matrix T = ( I

I+AiBj
) is an MDS matrix.

The proof is very simple based on previous arguments, so we omit it here.

In Theorem 4, we use two block Vandermonde matrices to construct involu-
tory MDS matrices. In the following we introduce another novel approach based
on two block Vandermonde matrices.

Theorem 6. Let V1 = V an(A0, A1, · · · , An−1) and V2 = V an(B0, B1, · · · , Bn−1)
be two block Vandermonde matrices, where Ai, Bj ∈ Mm(F2), 0 ≤ i, j ≤ n − 1,
are pairwise commutative and I+AiBj , 0 ≤ i, j ≤ n−1, and Ai+Ak, Bi+Bk, 0 ≤
i < k ≤ n−1,are non-singular. Then V ∗ = V1(V2P )−1 is an MDS matrix, where

P =

 I

. .
.

I

 and I is an m×m identity matrix.

Proof. Assume the inverse of V2 is V −12 = (Si,j), where Si,j ∈ Mm(F2), 0 ≤
i, j ≤ n− 1. It is easy to see the inverse of P is also P. Then we have

(V1(V2P )−1)[i, j] = ((V1P )V −12 )[i, j] =

n−1∑
k=0

Sk,jA
n−1−k
i .

Let p∗j (X) =
∑n−1
k=0 Sk,jX

n−1−k be a matrix polynomial. We can see that it can
be viewed as the reciprocal polynomial of the polynomial

pj(X) =

n−1∑
k=0

Sk,jX
k =

n−1∏
k=0
k 6=j

X +Bk
Bj +Bk

.

Thus we have

p∗j (X) =

n−1∏
k=0
k 6=j

I +BkX

Bj +Bk
.

This leads to

(V1(V2P )−1)[i, j] =

n−1∑
k=0

Sk,jA
n−1−k
i = p∗j (Ai) =

n−1∏
k=0
k 6=j

I +BkAi
Bj +Bk

. (5)

Let D3 = diag(
∏n−1
k=0(I+A0Bk),

∏n−1
k=0(I+A1Bk), · · · ,

∏n−1
k=0(I+An−1Bk)) and

D4 = diag(
∏n−1
k=1(B0 +Bk)−1,

∏n−1
k=0
k 6=1

(B1 +Bk)−1, · · · ,
∏n−2
k=0(Bn−1 +Bk)−1) be
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two block diagonal matrices. We have

D3TD4[i, j] =

n−1∏
k=0

(I +AiBk)(I +AiBj)
−1

n−1∏
k=0
k 6=j

(Bj +Bk)−1

=

n−1∏
k=0
k 6=j

I +AiBk
Bj +Bk

= (V1(V2P )−1)[i, j]

Since I+AiBj , 0 ≤ i, j ≤ n−1, and Ai+Ak, Bi+Bk, 0 ≤ i < k ≤ n−1, are non-
singular, we know the block Cauchy-like matrix T is MDS by Theorem 5, and
det(D3) 6= 0, det(D4) 6= 0. From Lemma 1, we know V ∗ = V1(V2P )−1 = D3TD4

is an MDS matrix.

For a block Vandermonde matrix V , we call the matrix V P a reversed block
Vandermonde matrix.

Based on the matrix V ∗ in Theorem 6, we can also give a construction of
involutory MDS matrices.

Theorem 7. Notations and assumptions are the same with those in Theorem

6. Then Ṽ = (R
n−1
2 V ∗[i, j]) is an involutory MDS matrix if Bi = AiR, where

R ∈Mm(F2), R 6= 0 and it is the square of a matrix when n is even.

Proof. From the definition of Ṽ , we have

Ṽ = (R
n−1
2 V ∗[i, j]) = diag(R

n−1
2 , R

n−1
2 , · · · , R

n−1
2 )V ∗.

From Lemma 1, we know Ṽ is an MDS matrix.

From (5) and Bi = AiR, we have

Ṽ [i, j] = R
n−1
2

∏n−1
k=0
k 6=j

I+AiBk

Bj+Bk
= R

n−1
2

∏n−1
k=0
k 6=j

I+RAiAk

R(Aj+Ak)
= R−

n−1
2

∏n−1
k=0
k 6=j

I+BiAk

Aj+Ak
.

Similarly we can derive

Ṽ −1[i, j] = R−
n−1
2 (V ∗)−1[i, j] = R−

n−1
2 V2(V1P )−1[i, j] = R

n−1
2

∏n−1
k=0
k 6=j

I+BiAk

Aj+Ak
= Ṽ [i, j].

So the matrix Ṽ is an involutory MDS matrix.

Similar to the approach used in the previous subsections, we can also obtain
lightweight involutory MDS matrices based on Theorem 7 using matrix polyno-
mials. We give an example in the following.

Example 2. Let f0(x) = 0, f1(x) = x3 + x, f2(x) = x, f3(x) = x7 + x5, r(x) = 1
and mB(x) = x8 + x2 + 1 = (x4 + x + 1)2. Then we have an involutory MDS
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matrix Ṽ by Theorem 7 with

B =



0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1
1 0 1 0 1 0 1 0


. (6)

The XOR counts of Ṽ is 151.

In the following we will give some comparisons of our construction with
previous constructions in Table 1.

Table 1. Comparison of 4× 4 involutory MDS matrices

Elements Reference Matrix type XOR count

M8(F2) Theorem 4 Block Vandermonde 64 + 4× 3× 8 = 160

M8(F2) Theorem 7 Permutation of block Vandermonde 38 + 4× 3× 8 = 151

F28 [28] Hadamard 40 + 4× 3× 8 = 152

F28 [3] Hadamard 80 + 4× 3× 8 = 176

Here, we only compare with the lightest results over finite field because we
are generalized some constructions of finite field. Note that the 4 × 4 involu-
tory reversed block Vandermonde MDS matrices over M8(F2) are lighter than
previous constructions over finite field. While it is possible to search for more
lightweight involutory reversed Vandermonde MDS matrices over sub-field or
non-commutative ring, it requires very different search strategy and it is beyond
the scope of our work.

4 Conclusion

In this paper, we construct MDS matrices and involutory MDS matrices directly
using block Vandermonde matrices and block Cauchy-like matrices. Some of our
results are direct generalizations of previous ones obtained over finite fields, but
we give a deeper understandings and simpler proofs. A novel structure named
block Cauchy-like matrix which was not considered before in the constructions
of MDS matrices is also presented. It is interesting that they also have relation-
ships with block Vandermonde matrices. With the approaches introduced in this
paper, we can also obtain some new lightweight involutory MDS matrices.
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