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Abstract. In this paper we re-examine quantum search applied to the
Multivariate Quadratic (MQ) hardness problem over the finite field
GF(2). This problem is key to the security of a number of proposed
post-quantum public-key cryptosystems designed to be resistant against
attacks from quantum computers and in this paper we give a warning
of the dangers of extrapolating parameters based upon the efficiency of
quantum search algorithms. Our methods demonstrate that by applying
preprocessing to theMQ problem, we can reduce the computational load
on the quantum computer and, in a generalisation of multi-target search
for single-targets, improve the efficiency of the basic quantum search or-
acle for the MQ problem over GF(2). Our work builds upon the MQ
oracle introduced by Westerbaan and Schwabe [19] and improves it to
the extent that it breaks all quantum-resistant security parameters for
the Gui cryptosystem [16] proposed by the original authors [15]. Our
results hold both in the logical gate model and when the algorithm is
fully costed in terms of the Clifford+T universal gate set.
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1 Introduction

The Multivariate Quadratic (MQ) problem, informally that of finding a solution
to a system of m degree two equations over a finite field in n variables, is a
significant problem in cryptography, given that asymmetric encryption systems
can be broken by solving large MQ systems of equations [4] and that a family of
public-key cryptosystems rely upon the hardness of solving this problem [16, 18].

These systems of equations are vulnerable to classical algorithms when the
system is either underdetermined (m ≪ n), overdetermined (m ≫ n) or sparse
(they contain equations using far fewer than n variables). The hardest instances
of the MQ problem are therefore thought to be dense systems when m ≈ n.
These algorithms can generally be placed on a spectrum with one extreme being
pure Gröbner bases techniques and the other being exhaustive brute force search,
which possesses a complexity of O

(
2n+2 log2 n

)
[7]. Whilst the best known clas-

sical Las Vegas methods for solving systems over GF(2) possess an asymptotic
complexity of O

(
20.792n

)
[5], it is thought that these methods only have an ad-

vantage over classical exhaustive search when n > 200. Whilst classical search
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is obviously still an effective tool, quantum search (sometimes referred to as
Grover’s algorithm [12]) offers a further advantage. For a search space of size
N = 2n with M satisfying assignments, the basic query complexity of classical

search is O
(
N
M

)
whilst the quantum query complexity is O

(√
N
M

)
. This mea-

sure of complexity refers only to the number of queries the algorithm must make
to a black box oracle, which upon input of a bitstring of length n, reveals only
whether the bitstring is a solution to our system of equations. This black-box
oracle can be realised in classical or quantum circuitry via interpreting each bit
of the length n bitstring as an assignment to a separate variable and evaluating
the system of equations upon this assignment. Once all equations are evaluated,
it is easily checked whether the system of equations is satisfied. Quantum search
additionally includes a diffusion step, the cost of which is often negligible com-
pared to the implementation of the quantum black-box, or quantum oracle. The
concrete gate count and gate depth for the entire quantum search algorithm to
terminate resulting in one of the M items with probability ≈ 1 is given by

π

4
·
√
N

M
·
(
Cost(Quantum oracle) + Cost(Diffusion step)

)
, (1)

where implementing the diffusion step costs O
(
log2N

)
. Unfortunately, or fortu-

nately for the security of cryptosystems, this query complexity has been proven
to be a lower-bound [8] and so techniques to reduce the total circuit complexity
or gate depth cost consist of reducing the cost of the quantum oracle, lowering
the query-complexity or accepting a smaller probability of success. We focus on
altering the stated problem so that we only obtain partial information concerning
the solution. This allows for a reduction of the query complexity at the expensive
of increasing the cost of the quantum oracle, resulting in concrete gains.

1.1 Concrete gains

In order to determine the threat that quantum computing poses to cryptographic
standards, a recent trend has been to produce quantum resource estimates for
various problems, such as quantum search applied to AES [11], preimage attacks
on SHA-2 and SHA-3 [1] and that of Shor’s algorithm [17]. Ultimately logical
gates must be implemented in a particular architecture and one potential choice
is to use the Clifford Gate set and the additional T gate, which together form the
universal Clifford+T gate set for quantum computation. Unfortunately quantum
computers are expected to require a vast amount of error correction and the cost
of error correction for T gates is predicted to overwhelm that required for the
Clifford gate set. This has led to recent quantum resource estimation papers
providing resource counts by counting the T gates and the Clifford gates sepa-
rately, allowing for an approximation of the difficulty of realising these algorithms
in potential near-future architecture. Schwabe and Westerbaan introduced the
cryptanalysis of the binary MQ problem [19] and provided low-qubit algorithms
to solve it, but only examined the problem in terms of logical gates. Their work
demonstrated that the binary MQ problem becomes vulnerable to quantum
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computers in the near future, as important instances can be solved with only
hundreds of logical qubits, compared to the thousands required to break other
cryptographic problems [11, 17, 1]. This motivates our paper and our results
provide further evidence that this problem may be even easier to solve.

Recently, the classical algorithms of BooleanSolve and XL have been adapted
to act as oracles in this manner in conjunction with quantum search and their
proposed gate count is lower than that required for quantum search with the
oracle of Schwabe of Westerbaan [19]. Whilst these are asymptotically superior
algorithms, our methods are based purely search-based, require no such assump-
tions and may require fewer resources for smaller instances.

1.2 Contributions

We provide a method that can be applied to any binaryMQ oracle that evaluates
m equations in n variables and stores their results on m registers to create
a partial search oracle. This technique defines the quantum search oracle as
one which checks whether n − b variables lead to a satisfying solution, where
0 ≤ b < n. Using this strategy increases the cost of the quantum oracle, but
allows us to benefit from the drop in query complexity. In order to implement
this, we must design a circuit based upon a classical preprocessing stage and
after the quantum search terminates, we must locate the remaining b variables.
These classical costs will be negligible as b is small compared to n.

Parameters for post-quantum cryptosystems are often chosen based upon
the efficiency of the best-known attack, as was the case with the Gui cryptosys-
tem [16, 15] and Schwabe and Westerbaan’s MQ oracle [19] and we highlight
that our methods should be viewed as a warning that basic structure can be
exploited in quantum algorithms in unexpected ways, so that parameters should
be chosen conservatively with regards to the best-known quantum attack.

1.3 Organisation of paper

Section 2 recaps the basics of quantum circuitry required to cost our algorithm.
Section 3 reviews quantum search. In Section 4 we review existing binary MQ
oracles and describe our quantum algorithm for partial search. In Section 5 we
review our results in the Clifford+T gate model. We give our conclusions in
Section 6.

2 Quantum algorithms and circuitry

2.1 Quantum computing

Both classical computers and quantum computers can be thought of as per-
forming operations upon a register which stores memory. In the case of classical
computers, the register contains bits, each of which can take on the value 0 or
1 and an n-bit state may be in one of the 2n possible states x ∈ {0, 1}n. In
contrast, the register of a quantum computer contains qubits and may be in a
superposition of the 2n states which a classical register might store. We refer
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to these 2n states as the computational basis states. By superposition, we mean
that the quantum state is

|ψ⟩ =
∑

x∈{0,1}n

αx |x⟩ , (2)

where αx ∈ C represents the amplitude of any particular state |x⟩. Measuring
the quantum register results in the collapse of the quantum state into a single
n-bit string, where the probability of measuring state |x⟩ is |αx|2, so that∑

x∈{0,1}n

|αx|2 = 1. (3)

Quantum algorithms work via manipulating the αx amplitudes into a state
whereby measurement will collapse the superposition into a single bit-string
which contains useful information. The manipulation of these amplitudes is per-
formed by means of quantum gates which are the quantum analog of classical
logic gates whose fundamental property is that they are reversible, in that no
information is lost through computing their output. This reversibility allows
computations to be uncomputed, but means that arbitrary boolean functions
must be implemented with an additional overhead.

Quantum states themselves may be represented as a vector of complex coef-
ficients and quantum gates as unitary matrices — quantum gates therefore act
linearly upon the quantum states, so that a quantum circuit implementing the
boolean function h : {0, 1} −→ {0, 1} acts by

Uh

∑
x∈{0,1}n

αx · |x⟩ =
∑

x∈{0,1}n

αx · Uh |x⟩ . (4)

Owing to the property of linearity and the nature of Grover’s algorithm, it will
be sufficient for our purposes to consider the operation of quantum gates upon
the individual computational basis states. At times we will represent algorithms
via quantum circuits, which should be read from left (input) to right (output).

Quantum circuits must be reversible and so to implement an arbitrary boolean
function we must adapt the function. This can be achieved by defining the quan-
tum circuit to include the input (n bits), output (m bits) and working memory
(w bits) so that the boolean function h : {0, 1}n −→ {0, 1}m is interpreted as
the quantum circuit Uh : {0, 1}n+m+w −→ {0, 1}n+m+w

Uh |x⟩ |y⟩ |0⟩w 7→ |x⟩ |y ⊕ h(x)⟩ |g(x)⟩ . (5)

This computation results in a number of so-called ”garbage bits”, |g(x)⟩, which
can be thought of as the end state of the working memory and ancillae bits.
If these garbage bits are not dealt with, they will interfere with the diffusion
step of quantum search, which relies upon the register being identical on all
places apart from the computational basis states representing the search space
|x1 . . . xn⟩. There is a simple procedure to compute h(x) without garbage bits,
which requires an extra space of m-qubits. The procedure consists of computing
|x⟩ |y⟩ |g(x)⟩ |h(x)⟩ as in (5) and copying the result to the output register before
uncomputing Uh.
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2.2 Quantum gates

The logical quantum gates we describe below may be decomposed into their
Clifford+T gate components as in Figure 2 and we provide further details in
section 5. Owing to the linear action of quantum gates, as in (4), it suffices to
study the action of these logical gates acting upon an arbitrary computational
basis state |x1 . . . xk⟩, where xi ∈ {0, 1}. We will wish to implement the boolean
functions ∧k for k ≥ 2, ⊕ and NOT in quantum circuitry. We briefly review these
primitives, provided by the designers of the original binary MQ oracle [19].

|x1⟩ • |x1⟩
|x2⟩ |x1 ⊕ x2⟩

(a) A CNOT gate acting as x⊕ y.

|x⟩ X |x⊕ 1⟩

(b) An X gate acting as the NOT gate.

|x1⟩ • |x1⟩
|x2⟩ • |x2⟩
|x3⟩ |x3 ⊕ x1 · x2⟩

(c) A Toffoli gate acting as x ∧ y.

|x1⟩ • |x1⟩
...

...
|xk−1⟩ • |xk−1⟩

|xk⟩ |xk ⊕ x1 · · ·xk−1⟩

(d) A k-bit Toffoli gate acting as
k−1∧
i=1

xi.

Fig. 1: Self-inverse gates for building boolean circuits in quantum circuitry.

As the set {∧,⊕, NOT} is a universal boolean gate set, this collection of
quantum gates is sufficient to implement arbitrary boolean circuits. We will allow
the X gate to act as a primitive gate for the Clifford gate set, though will treat
the Toffoli and k-bit Toffoli gate as logical gates for now, whose construction
may be optimised dependent upon the availability of ancillae bits.

The Hadamard gate is used in the diffusion stage of quantum search and for
the construction of Toffoli and k-bit Toffoli gates — facts we will use only for the
gate count. Importantly, the Hadamard gate acts upon the state |1⟩ to create

H |1⟩ 7→ |0⟩ − |1⟩√
2

= |−⟩ , (6)

which is used to realise the action of the quantum oracle, covered in section 3.2.

2.3 Universal gate sets and error correction

Quantum circuits, much like boolean circuits, may be built out of a finite univer-
sal gate set. In line with other quantum resource estimation papers [11, 1, 17],
we consider the Clifford+T universal gate set for quantum circuits.

Whilst other universal quantum gate sets are naturally possible, this choice
represents a potential, well studied gate set and allows a direct comparison with
other literature on quantum resource estimation. The Clifford gate set is gener-
ated by the gate set {Controlled-NOT (CNOT), Hadamard (H) and Phase (S)}
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and, with the addition of the T gate and its inverse T †, allows approximation
of any reversible quantum gate. We will work directly with logical CNOT, X,
Hadamard, Toffoli and k-bit Toffoli gates, which may be easily converted into
Clifford+T gate representations.

• T † • T † T † S •

• = T • • T † •

H T • T • H

Fig. 2: The logical Toffoli gate decomposed into Clifford+T gates [3, 20].

Owing to the physical scales involved, quantum circuits are inherently vul-
nerable to noise from their environment. This can be corrected for with an error
correction scheme, such as that of surface codes [10], though requires many
physical qubits to realise the logical qubits which we use to describe quantum
algorithms. The cost of error correction for T gates dominates that required
for the Clifford gate set and so it has become a common paradigm to separate
quantum resource estimations into the Clifford gate complexity and the T gate
complexity. We provide gate count and depth in terms of logical gates and T
gates, in line with recent quantum resource estimates [11, 1, 17] in Section 6.

3 Quantum search

3.1 Grover’s algorithm

Search problems may be defined by a boolean function h : {0, 1}n −→ {0, 1}
such that h(x) = 1 if and only if x is one of the items that fits our criteria. If h
is a black-box (that is, when evaluated upon x it reveals no information other
than its output), then the number of classical queries we must make to find one
of M items in a search space of size N is clearly O

(
N
M

)
.

Grover’s quantum search algorithm [12] outputs one of M marked items
we are searching for in a space of size N and, after an initial setup phase to
generate the uniform superposition of n-bit strings, consists of iterating a single
procedure, the Grover iteration, an optimal number of times before measuring
the quantum register. The Grover iteration is composed of two steps — the call to
the quantum oracle and the diffusion step on n-qubits. In essence, the quantum
oracle inverts the phase of the items we are searching for, thereby ”marking”
them and the diffusion step inverts every amplitude around the mean of all
amplitudes. There is an optimal lower bound to the number of queries to the
quantum oracle for measurement to result in a marked item with probability

≈ 1, which is ≈ π
4 ·

√
N
M [12, 8]. Before this bound is reached, the probability of

measurement resulting in a marked item will monotonically increase.
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Fig. 3: Evolution of state magnitudes for N = 8, M = 1 and two iterations.

The total cost of executing Grover’s algorithm will be the product of the
query complexity with the circuit complexity/depth complexity of the quantum
oracle and the diffusion step, therefore being

π

4
·
√
N

M
·
(
Cost(oracle) + Cost(diffusion step)

)
. (7)

As we will see, using an efficient exhaustive search method within the quantum
oracle simultaneously increases the cost of the oracle whilst both (under mild
assumptions and for M ≪ N) maintaining correctness of the algorithm and
reducing the query complexity. As a side benefit, the cost of calling the diffusion
step is also mildly reduced. These factors will all lead to real-world gains.

3.2 The quantum oracle

Defining the boolean function h : {0, 1}n −→ {0, 1} to be the function for which
h(x) = 1 if and only if x is one of theM items we are searching for, the quantum
oracle is a quantum circuit which acts upon each computational basis by

|x⟩ 7→

{
−|x⟩ if h(x) = 1

|x⟩ otherwise.
(8)

Whilst this can be performed in several ways, our method requires the use of the
|−⟩ state described by (6), so that the quantum oracle is realised by the action,

|x⟩
( |0⟩ − |1⟩√

2

)
7→ |x⟩

( |0⊕ h(x)⟩ − |1⊕ h(x)⟩√
2

)
= (−1)h(x) |x⟩

( |0⟩ − |1⟩√
2

)
. (9)

If we ignore the parts of the register which are identical for all computational
basis states, then the action of the quantum oracle is as described by (8). Ma-
nipulating the phase of the amplitude according to an implemented boolean
function is sometimes referred to as phase kickback. The resource requirements
for the quantum oracle are naturally dependent upon the search problem.

3.3 The diffusion step

The diffusion step affects the amplitudes via the operation of inversion around
the mean. Details may be found in the reference section [14], but in essence the
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diffusion step acts upon the amplitudes of the computational basis states so that

αx 7→ 2 · ⟨α⟩ − αx where ⟨α⟩ = 1

N

∑
x∈{0,1}n

αx. (10)

As applying the quantum oracle with phase kickback means that the amplitude
of all marked items is negative, we have that the amplitude of marked items after
the diffusion step is increased and those of unmarked items are decreased. The
diffusion step upon n-qubits is commonly implemented by a circuit involving 2n
Hadamard gates, 2n X gates and a single (n+ 1)-bit Toffoli gate.

4 An MQ partial search oracle

Definition 1 (The Multivariate Quadratic (MQ) problem).
Given f (1), . . . , f (m) ∈ Fq[x1, . . . ,xn], where Fq is the finite field of size q and
each equation is of degree two, the Multivariate Quadratic (MQ) problem is to
find an x̄ = (x̄1, . . . , x̄n) with x̄i ∈ Fq such that f (i)(x̄) = 0 for i = 1, . . . ,m.

The binary MQ problem is simply the specialised case when q = 2. As a minor
modification, we consider the equivalent problem of searching for an x̄ ∈ {0, 1}n
such that all equations are satisfied when f (i)(x̄) = 1 for i = 1, . . . ,m. This is
trivially obtained via addition of 1 to all equations and allows us to easily output
whether all equations are satisfied via one (m + 1)-bit Toffoli gate. In all cases
we will assume that n ≤ m < 2n, as efficient algorithms exist when m ≥ 2n [13]
and when m < n, the system can be reduced to this problem [21].

4.1 Previous work of Schwabe and Westerbaan

Design We review the original binary MQ oracle [19], which we will use in our
partial search oracle and for comparison. The single equation

f (k)(x1, . . . ,xn) =
∑

1≤i<j≤n

a
(k)
i,j xixj +

∑
1≤i≤n

b
(k)
i xi + c(k) (11)

with a
(k)
i,j , b

(k)
i , c(k) ∈ {0, 1} may be placed into the equivalent representation

f (k)(x1, . . . ,xn) = c(k) +

n∑
i=1

y
(k)
i xi with y

(k)
i = b

(k)
i +

n∑
j=i+1

a
(k)
i,j xj . (12)

This representation is then exploited to compute in a manner that is space
efficient and reversible. To load the equation f (k) into the register

∣∣E(k)
⟩
with

the temporary storage qubit |t⟩, the following method may be used. We note∣∣E(k)
⟩
and |t⟩ are initialised to |0⟩.
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For i = 1, . . . ,n

(a) Compute y
(k)
i in the |t⟩ register. The linear component involving the

variables is computed using CNOTs with |xj⟩ as the control and |t⟩ as

the target when ai,j = 1. The addition of b
(k)
i is handled via an X gate.

(b) Add xiy
(k)
i to the register

∣∣E(k)
⟩
. This is accomplished via a Toffoli gate

with the first control set to |xi⟩ and the second on the register |t⟩, which
holds the value y

(k)
i by our previous step.

(c) Perform step (a) again to uncompute y
(i)
i from the |t⟩ register.

Once the nonconstant part of the equation is loaded, an X gate may be used to
perform addition of the constant c(k) if required. To illustrate this, we convert
the equation

f (k) = x1x4 + x2x4 + x1x5 + x3x4 + x3x5 + x4x5 + x1 ++x3 + x5 + 1 (13)

into

y
(k)
1 = x4 + x5 + 1 y

(k)
2 = x4 y

(k)
3 = x4 + x5 + 1

y
(k)
4 = x5 y

(k)
5 = 1. (14)

which for loading x1y
(k)
1 into the 7th register using the 6th register for temporary

storage corresponds to the following circuit

|x1⟩ • |x1⟩
|x2⟩ |x2⟩|x3⟩ |x3⟩
|x4⟩ • • |x4⟩
|x5⟩ • • |x5⟩
|0⟩ X • X |0⟩

|0⟩ |x1 · (x4 + x5 + 1)⟩

Fig. 4: Addition of x1y
(k)
1 to an equation register via a temporary storage register.

Including the cost of uncomputing the equation registers, this oracle therefore
requires 2mn Toffoli gates for multiplication, 4mn + 2m X gates, 2m(n2 − n)
CNOT gates and n+m+ 1 qubits.

4.2 A partial search oracle

We propose a quantum oracle that can be constructed from any circuit that
evaluates m binary MQ equations and stores their result in m registers. For a
concrete example we will use the oracle described in section 4.1. Our circuit solves
the k-partial search problem for the binary MQ problem, which can simplify
solving the initial binary MQ problem. In essence our strategy is to relax the
problem and use preprocessing to reduce the computational load. This can either
be optimised towards total gate count or the total number of T gates.
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Definition 2 (The k-Partial Search problem). Given h : {0, 1}n −→ {0, 1}
and a promise that there exist M bit-strings for which h(x) = 1, the k-partial
search problem is to locate at least k bits of a bitstring for which h(x) = 1.

If we can obtain the first n−b bits of a valid bitstring, then substitution of these
values into a system of m equations in n variables will result in a system of m
equations in b variables, a far easier problem to solve either classically via either
Gröbner bases/XL algorithms [9, 5, 13] or a classical/quantum search.

4.3 Concept

Our starting point is to view each quadratic equation as a sum of three compo-
nents, so that the equation f (k) with original representation

f (k)(x1, . . . ,xn) =
n∑

i=1

n∑
j=i+1

a
(k)
i,j xixj +

n∑
i=1

b
(k)
i xi + c(k) (15)

is viewed as the equation

f (k)(x1, . . . ,xn) = g
(k)
1 (x1, . . . ,xn−b) + g

(k)
2 (x1 . . . ,xn) + g

(k)
3 (xn−b+1, . . . ,xn),

(16)

where

g
(k)
1 (x1, . . . ,xn−b) =

n−b∑
i=1

n−b∑
j=i+1

a
(k)
i,j xixj +

n−b∑
i=1

b
(k)
i xi (17)

g
(k)
2 (x1, . . . ,xn) =

n−b∑
i=1

n∑
j=n−b+1

a
(k)
i,j xixj (18)

g
(k)
3 (xn−b+1, . . . ,xn) =

n∑
i=n−b+1

n∑
j=i+1

a
(k)
i,j xixj +

n∑
i=n−b+1

b
(k)
i xi + c(k). (19)

In this way g1 consists of the quadratic and linear terms involving only the first
n− b variables, g2 consists of the quadratic terms for which one variable is from
the first n−b variables and the second variable is from the last b variables, whilst
g3 consists of the quadratic and linear terms involving the last b variables and
the constant term.

Our first observation is that substitution of the last b variables will result in
g
(k)
1 remaining as in (17), whilst g

(k)
2 will become a linear equation in the first n−b

variables and g
(k)
3 will evaluate to a constant bit. Our circuit design will exploit

this, so that our search space for Grover’s algorithm will be defined upon the

first n−b variables and the oracle itself will evaluate the g
(k)
1 equations and then

implement a method similar to exhaustive search of the final b variables. This
exhaustive search is based upon a classical preprocessing step which generates

m·2b linear equations obtained by substituting g
(k)
2 +g

(k)
3 with the last b variables.
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The key idea behind our method will be that if b is small, then after the m

g
(k)
1 equations have been evaluated, the addition of the m · 2b linear equations

will be a minor cost compared to that of computing the g
(k)
1 . The use of classical

preprocessing reduces this exhaustive search on the final b variables to a circuit
using only CNOT gates and (m+1)-bit Toffoli gates. This allows us to define the
search space on n− b variables and benefit from the drop in query complexity.

4.4 Our hybrid classical/quantum algorithm

Classical preprocessing We first choose an optimal 0 ≤ b < n, which can
be easily derived for a fixed n and m via the equations in section 5.3. We note
that b will be small (b = 6 for n = m = 80). We then create the m tuples

(g
(k)
1 , g

(k)
2 , g

(k)
3 ) as in (17), (18) and (19). After this is done, we evaluate the g

(k)
2

and g
(k)
3 equations upon all 2b assignments of the last b variables and store the

results. We then have m g
(k)
1 equations, m · 2b linear g

(k)
2 equations and m · 2b

g
(k)
3 constants. So long as b is small, this will be a negligible cost.

The quantum oracle The search space for our oracle is defined upon the first
n − b variables. The oracle first loads m registers with the evaluation of the m

g
(k)
1 (x̄1, . . . , x̄n−b) equations via any circuit design for evaluation of polynomials
and then implements 2b sub-circuits. Each subcircuit performs the addition of

the linear equation from the preprocessed g
(k)
2 and the constant bit from the

preprocessed g
(k)
3 to the respective equation registers and checks whether the

equations have been satisfied via an (m+ 1)-bit Toffoli gate wired to the phase
flip bit |−⟩. This has the effect of inverting the phase whenever the first n − b
variables and the last b variables captured in the m linear equations that the
subcircuit implements lead to a satisfying solution together.

The final subcircuit additionally performs uncomputation to leave each equa-

tion register in the state g
(k)
1 (x̄1, . . . , x̄n−b). The equation registers may then all

be uncomputed via the method used to load them with the values g
(k)
1 .

The 2b subcircuits are equivalent to performing classical exhaustive search
upon the 2b values that the variables xn−b+1, . . . ,xn may be assigned. Excluding
the first and last of these circuits, each circuit must only add the difference
between each pre-processed sum, meaning that we use 2b (m + 1)-bit Toffoli
gates and at most (2b + 1) · m(n − b) CNOT gates, which can be executed in
(2b + 1) ·m layers with our assumption that m ≥ n. There will additionally be
at most (2b + 1) ·m X gates, which can be performed in (2b + 1) layers. As the
search space is only defined on n− b variables, the entire circuit requires b fewer
qubits for the oracle than would otherwise be required.

Classical postprocessing It then remains for us to substitute the n− b values
obtained from the quantum search bitstring into our system of m equations. We
will then have to solve a system of m equations in b variables, but as b will be
small, this cost will be negligible compared to the quantum search stage.
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Benefits The major benefit of this method is that for small b we can exploit

the smaller query complexity, O
(
2

n−b
2

)
as opposed to O

(
2

n
2

)
and the data

gathered from the preprocessing stage in an efficient manner. The preprocessing
stage helps us via shifting the computational load from the Toffoli gates to
CNOT gates, which require less error correction, and (m + 1)-bit Toffoli gates,
whose T count can be more readily optimised. We will obtain gains so long as the
combined benefits of the lower query complexity applied to the entire modified
oracle result in a a lower gate count to that of the original oracle.

The technique is also embarassingly parallel, in that if we are lucky to have

an excess of qubits, then after computing the m values of g
(k)
1 , we can copy

these values to m empty registers and execute the 2b subcircuits in parallel with
multiple phase flip bits. Hence any qubits used for parallelism in the circuit for

computing g
(k)
1 need not be idle during the exhaustive search step.

4.5 Cost analysis

We note that the case b = 0 is that of the original evaluation circuit being used as
a quantum oracle without modification. As with the case of the original oracle,
circuit depth is dependent upon the number of additional qubits available — for
reasons of space, we leave discussion concerning circuit depth to an expanded
version of this paper, which details the circuit depth of Schwabe and Wester-
baan’s oracle and provides new MQ evaluation oracles optimised for depth and
T gate count.

Circuit-size/depth complexity Fixing a cost metric of a function to be
Cost(·), a procedure to evaluate m equations in n variables as Eval(n,m), the
(m + 1)-bit Toffoli gate as Toffoli(m+ 1) and the diffusion step on n variables
as Diff(n), we obtain our maximum advantage when

2
n−b
2 ·

(
2 · Cost

(
Eval(n-b,m)+ 2b · Cost

(
Toffoli(m+ 1)

)
+ Cost

(
Diff(n-b)

))
(20)

is minimised. We examine the exact benefits in terms of Clifford+T gates in
section 5 after detailing the cost of the Toffoli and (k + 1)-bit Toffoli gates.

4.6 Valid parameters

We note that if M > 1, then multiple solutions may share the same first n − b
values. The quantum search procedure described in Section 4.4 may then invert
the phase an even number of times, which will be equivalent to no phase inver-
sion, hence the quantum search may fail. In reality, we are dealing with the case
where M ≪ N (often M ≈ 1), can fix variables in order to obtain this scenario,
or even permute the variable indices upon failure and try again. Nevertheless, a
negligible chance of failure remains and without a promise that there exists no
collision on the first n− b bits of any two solutions, we must view our adaption
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as a heuristic adaption to quantum search. One option to correct for this would
be to increment a counter [19] controlled on the output of the (m+1)-bit Toffoli
gate and invert the phase if and only if the counter has been incremented. This
would provide for correctness, but the overhead required may destroy our gains.

To obtain gains we must choose an optimal value for b, which is dependent
upon the cost of implementing the (m + 1)-bit Toffoli gate. The next section
reviews the T gate cost metric and the cost of our partial search oracle.

5 Analysis and impact in the T gate model

Up until now we have kept our analysis in the logical gate model. In this section
we expand upon Section 2.3, briefly justifying the costing of quantum circuitry
in terms of separate counts for the Clifford gates and T gates. We provide Clif-
ford+T costs for the Toffoli and k-bit Toffoli gates and provide analysis for
partial search oracle. Full details of error correction methods are beyond the
scope of this paper and we refer the reader to [1] for a more detailed treatment.

5.1 Error correction and T gates

The cost of error correction for T gates dominates that of those from the Clifford
gate set. In essence this is because fault-tolerant implementation of the T gate
requires a process referred to as magic state distillation. This process requires
creation of the so-called magic state

|Θ⟩ = |0⟩+ e
iπ
4 |1⟩√
2

, (21)

in an ancillae qubit which is consumed upon application of each T gate [1].

In order for the entire algorithm to be implemented correctly, we must have
that each |Θ⟩ is produced with an error rate of less than or equal to 1

TU
, where

TU is the total number of T gates used in the entire quantum algorithm [1]. Cre-
ation of these magic states may be handled by so-called magic state distillation
factories, which produce magic states by processing multiple noisy |Θ⟩ states
and distilling them into a single |Θ⟩ state with less noise. This process may be
repeated until a |Θ⟩ state is produced with the required error threshold. Given
that this process is required only for the implementation of T gates, papers which
estimate the cost of quantum algorithms include a separation of cost metrics in
either in terms of Clifford gates and T gates [11, 1], or only Toffoli gates [17].

5.2 Clifford+T gate costs for logical gates

Our primitive Clifford gates will be {CNOT, S, H, X}. It then remains for us to
provide costs for implementations of the logical Toffoli and k-bit Toffoli gates.
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The Toffoli and k-bit Toffoli gates We will use the construction in Figure
2 for the Toffoli gate, which requires 7 T gates and 10 Clifford gates.

From (20), it is obvious that the cost of the (m+ 1)-bit Toffoli gate plays a
large part in the efficiency of our methods. We detail more efficient constructions
in an expanded version of this paper, but choose an older and relatively inefficient
construction to demonstrate the gains that can be made by using our partial
search method. The k-bit Toffoli gate can be constructed by elementary means
using only Toffoli gates and one ancilla qubit, which breaks down into 80k−240
Clifford gates and 52k−168 T gates [6].Without using at least one ancilla qubit,
the cost of implementing the k-bit Toffoli gate will be O

(
k2

)
[22, 6] and we note

that any improvement in circuit design for the multiple controlled Toffoli gate
translates has a favourable impact upon the concrete cost of our partial search
algorithm. Optimisation programs such as TPar [2] may provide further gains.

5.3 Clifford+T gate costs for our partial search oracle

We provide the cost of the oracle circuits in terms of Clifford gates and in T
gates and parameterised by n, m and b, using the original MQ oracles[19] as
our evaluation circuit. This gives us a total cost in terms of Clifford gates of

π

4
· 2

n−b
2 ·

(
2m(n− b)2 + 23m(n− b) + 2b(m(n− b) + 81m− 160) + 84n− 160

)
(22)

and a total cost in terms of T gates of

π

4
· 2

n−b
2 ·

(
14m(n− b) + 2b(52m− 116) + 52(n− b)− 116

)
. (23)

Given a fixed n andm, an optimum value of b can easily be found and from these
equations it is clear our gains come from ensuring the drop in the contribution
from the query complexity is not outweighed by the term involving 2b.

6 Impact and conclusions

Parameter choice for quantum security The Gui cryptosystem [16] is a
proposed Multivariate Quadratic public-key signature scheme that is thought to
be resistant to quantum attacks. The Gui signature scheme relies upon k (known
as the repetition factor) applications of an HFEv- (Hidden Field Equations with
Vinegar variables and Minus equations) derived central map, which is a system
of m equations in n variables over GF(2). Forging a signature therefore requires
inverting the central map k times. Whilst parameters for security against only
classical attacks were provided in the original paper [16], the authors provide
parameters for security against an attack by a quantum computer in a later
paper [15], including the parameters for λ = 80, 128 and 256 bit quantum security
(it should require at least 2λ quantum gates to break the scheme).
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For reasons of space, we refer the reader to the original paper for details
of Gui, but summarise the number of equations, variables and repetition factor
along with the number of gates using the original MQ oracle and the MQ oracle
with our adaptations in Table 1 below. We use the Clifford+T gate count as we
believe this allows for a fair comparison of our methods. Our results still stand
(and are in fact better) in a purely logical gate model [19], but we feel that
this makes for a fair comparison, given that we use far more multiple controlled
Toffoli gates and we do not wish to hide any costs by abstracting this primitive.

λ [15] n = m k #Gates using [19] #Gates using our method b chosen for our method

80 117 2 280.99 278.38 7

128 209 2 2129.40 2126.26 8

256 457 2 2256.71 2252.93 10

Table 1: Number of Clifford+T gates required to break Gui [16, 15].

As is plain from the table above, which can easily be computed by adding for-
mulae (22) and (23), our methods break the proposed quantum-resistant param-
eters for Gui given in [15]. As our results do not imply any structural weakness
in Gui, new parameters for the cryptosystem can easily be chosen to ensure it is
secure for the relevant security level, though in doing so we risk again leaving the
cryptosystem open to any future optimisations. It is our hope that this demon-
strates that when deciding on parameters for a given security level, even when
taking into account the best-known quantum algorithms we must be especially
conservative, as the structure of the problem may be vulnerable to techniques
such as pre processing, which may reduce the overhead of the quantum oracle.

Conclusions We have demonstrated that techniques such as reformulation of
the MQ problem, classical preprocessing and adaptation of multi-target search
techniques for single targets can provide us with concrete improvements which
can break the quantum resistant parameters ofMQ cryptosystems. Furthermore
we have proved that in relation to the Clifford+T gate set, we can specifically
lower the total number of T gates and therefore drastically reduce the amount
of error correction required. The techniques described in this paper demonstrate
both how quantum algorithms may be optimised and that parameters should be
chosen conservatively with regards to best-known quantum algorithms.
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