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Abstract. In this paper, we enumerate superspecial hyperelliptic curves
of genus 4 over finite fields Fq for small q. This complements our preced-
ing results in the non-hyperelliptic case. We give a feasible algorithm to
enumerate superspecial hyperelliptic curves of genus g over Fq in the case
that q and 2g+2 are coprime and q > 2g+1. We executed the algorithm
for (g, q) = (4, 112), (4, 132), (4, 172) and (4, 19) with our implementa-
tion on a computer algebra system Magma. Moreover, we found many
maximal hyperelliptic curves and some minimal hyperelliptic curves over
Fq from among enumerated superspecial curves.
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1 Introduction

Let Fq denote the finite field with q elements. A curve C of genus g over Fq is
called maximal (resp. minimal) if the number of Fq-rational points on C attains
the Hasse-Weil upper bound q + 1 + 2g

√
q (resp. the Hasse-Weil lower bound

q + 1− 2g
√
q). These curves are interesting objects in their own right, and also

are useful in applications such as coding theory (e.g., [11], [21]). Specifically,
algebraic geometric codes produced from curves with many rational points have
both high information rate and high error-correcting rate; for such curves the
sum of these two quantities is large. Thus, it has been a central problem to find
maximal curves. However, the number of maximal curves over Fq of genus g for
a fixed pair (g, q) is very small, compared with the whole set of curves over Fq
of genus g, and thus it is not easy at all to find maximal curves. The notion of
superspecial curves helps us to find such curves. In general, a curve over a field
K of positive characteristic is said to be superspecial if its Jacobian is isomorphic
to a product of supersingular elliptic curves over the algebraic closure K of K.
It is known that any maximal or minimal curve C over Fp2 is superspecial,
where p is a prime. Conversely any superspecial curve over an algebraically
closed field descends to a maximal or minimal curve over Fp2 , see the proof of



[4, Theorem 1.1]. In the hyperelliptic case, we can say more: The existence of a
superspecial hyperelliptic curve of genus g in characteristic p implies that there
exists a maximal curve of genus g over Fp2 and also a minimal curve of genus
g over Fp2 . We will review this fact in §2.2. This work focuses on enumerating
superspecial curves to find all maximal hyperelliptic curves among them.

In the literature, there are many works on the enumeration of superspecial
curves of genus g:

– If g ≤ 3, some theoretical approaches to enumerate superspecial/maximal
curves are available, which are based on Torelli’s theorem (cf. [3], [25, Prop.
4.4] for g = 1, [10], [13], [22] for g = 2, and [9], [12] for g = 3). In particular,
there exists a maximal curve of genus g over Fp2e if g = 2 and p2e ̸= 4, 9 (cf.
[22, Théorème 3]) and if g = 3, p ≥ 3 and e is odd (cf. [12, Theorem 1]).

– If g ≥ 4, however, these approaches are not so effective; different from the
case of g ≤ 3, the dimension of the moduli space of curves of genus g is
strictly less than that of the moduli space of principally polarized abelian
varieties of dimension g. Thus the case of g = 4 is the next target. For
p = 5, Fuhrmann-Garcia-Torres [5] found a maximal curve C0 of genus 4
over K = F52 , and proved that it gives a unique isomorphism class over
K. In recent years, enumerations of superspecial curves of genus 4 in some
small characteristic have been completed in [14], [16] and [17]. Specifically,
the isomorphism classes of superspecial non-hyperelliptic curves of genus 4
over Fq are determined for q = 52e−1, 52e, 72e−1, 72e and 112e−1, where
e is a natural number. Note that all the maximal curves over K = F52

enumerated in [14] are included in the unique isomorphism class of C0 over
K. In the hyperelliptic case, the existence of superspecial curves is known
for some q (e.g., [23], [24]). Note that this study is motivated to enumerate
all superspecial curves, while the papers [23] and [24] characterize specific
superspecial curves. In particular, the paper [24] uses Serre’s covering result
in order to study the maximality of a specific curve.

In this work, we enumerate superspecial hyperelliptic curves of genus 4 in
characteristic p ≤ 19. Note that we do not use Serre’s covering result, but apply
techniques in computer algebra such as Gröbner bases. This work also comple-
ments our preceding results in [14], [16] and [17] for non-hyperelliptic curves.
Thanks to Ekedahl [4, Theorem 1.1], there is no superspecial hyperelliptic curve
of genus 4 if p ≤ 7. Our results are the following theorems (Theorems 1 – 3),
see Table 1 for a summary of results in g = 4. Note that the number of isomor-
phism classes of superspecial curves over Fpa depends on the parity of a (cf. [16,
Proposition 2.3.1]).

Theorem 1. There is no superspecial hyperelliptic curve of genus 4 in charac-
teristic 11 and 13.

Theorem 2. There exist precisely 5 (resp. 25) superspecial hyperelliptic curves
of genus 4 over F17 (resp. F172) up to isomorphism over F17 (resp. F172). More-
over, there exist precisely 2 superspecial hyperelliptic curves of genus 4 over the
algebraic closure in characteristic 17 up to isomorphism.
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Table 1.Main references to enumerations of isomorphism classes of superspecial curves
of genus g = 4 over Fq, where q is a power of a prime p.

q Non-Hyperelliptic Hyperelliptic q Non-Hyperelliptic Hyperelliptic

p ≤ 3
Non-Existence 132e−1

Not yet

Non-Existence

by Ekedahl [4] 132e by Thm. 1

52e−1 [16, Thm. A] 172e−1

Thm. 2
52e [14, Thm. A] Non-Existence 172e

72e−1 Non-Existence by Ekedahl [4] 192e−1 Thm. 3

72e by [14, Thm. B] 192e Not yet

112e−1 [16, Thm. B] Non-Existence
p ≥ 23

Not yet

112e Not yet by Thm. 1 (Existences for some p, cf. [6], [23])

Theorem 3. There exist precisely 12 superspecial hyperelliptic curves of genus
4 over F19 up to isomorphism over F19. Moreover, there exist precisely 2 su-
perspecial hyperelliptic curves of genus 4 over F19 up to isomorphism over the
algebraic closure.

Note that we have explicit defining equations of the superspecial hyperelliptic
curves in Theorems 2 and 3 (but omit them in the statements). Such explicit
equations also define maximal or minimal curves over Fp2 . For example, we
found the following superspecial curve over F172 ; for each a ∈ F×

17 consider the
hyperelliptic curve Ca : Ha(x, y) = y2−(x10+ax7+(13a2)x4+(12a3)x) = 0 over
F172 , which is included in one of the 25 isomorphism classes of the superspecial
hyperelliptic curves over F172 . Then Ca : Ha(x, y) = 0 is a maximal curve over
F172 . Indeed, the number of its F172 -rational points is 426, which coincides with
the Hasse-Weil upper bound q + 1 + 2g

√
q for q = 172. Moreover, each Ca is

not F172-isomorphic to y2 = x10 + x, which is a maximal curve of known type
(cf. [23], [24]). This means that we obtain a maximal curve of new type. For the
other equations, see a table of the web page of the first author [27].

We prove Theorems 1 – 3 with help of computational results. Our com-
putational methods are (A) Algorithm to enumerate superspecial hyperelliptic
curves, (B) Reduction of defining equations of hyperelliptic curves, and (C) Iso-
morphism testing. Our enumeration method (A) is based on the computation of
Cartier-Manin matrices (cf. [7], [19], [26, Section 2]), and reduces our enumera-
tion problem into solving multivariate systems over finite fields. The method (A)
is also viewed as a hyperelliptic curve-version of algorithms for non-hyperelliptic
curves given in [14], [16] and [17]. The method (B) reduces parameters of defin-
ing equations as much as possible. Namely, it reduces the number of variables
in multivariate systems to be solved, which clearly makes our algorithm (A)
efficient. The method (C) gives an algorithm to classify isomorphism classes of
arbitrary hyperelliptic curves of given genus over a finite field. Note that in this
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paper we do not mention the asymptotic complexity but the practicality of our
enumeration algorithm only.

Notation. For a field K, we denote by K× its multiplicative group. The general
linear group of degree n over K is denoted by GLn(K).

2 Preliminaries

Let K be a field of odd characteristic p > 0. In this section, we review some
basic facts on hyperelliptic curves over K and their superspeciality.

2.1 Hyperelliptic curves

Let C be a hyperelliptic curve over K. By definition, there exists a morphism
π : C → P1 of degree 2 over K, where P1 denotes the projective line. It is known
(cf. [8, Prop. 5.3]) that the pencil π is unique up to automorphisms of P1, whence
we may assume that π is defined over K. Let g be the genus of C. It is known
that π is ramified over distinct 2g + 2 points. Write P1 := Proj(K[X,Z]). Let
K(C) (resp. K(x)) be the field of rational functions on C (resp. in x = X/Z).
The π induces a quadratic extension K(C)/K(x). Let y ∈ K(C) be a generator
of the different ideal of K(C)/K(x) with respect to K[x], the ring of integers of
K(x). As y2 belongs to K[x], we see that C is realized as the desingularization
of the homogenization of

y2 = f(x), (1)

where f(x) is a polynomial over K with non-zero discriminant. Assume that the
cardinality of K is greater than 2g+1. If necessarily, by an automorphism of P1

over K we translate the ramified points of π outside ∞ := (1 : 0) ∈ P1. Then
f(x) is of degree 2g + 2.

Remark 1. If f(x) = 0 has a root α in K, by the transformation x′ = 1/(x− α)
and y′ = y/(x− α)g we have another realization of the curve:

y′
2
= ϕ(x′), (2)

where ϕ(x′) is a polynomial over K of degree 2g + 1. However as f(x) does not
always have a rational root, we can not use the model of odd degree.

The next lemma describes the set of isomorphisms between two hyperelliptic
curves C1 and C2. This in particular gives a criterion for whether C1 and C2 are
isomorphic to each other or not.

Lemma 1. Let f1(x) and f2(x) be elements of K[x] of degree 2g + 2. Let C1

and C2 be the hyperelliptic curves over K defined by y2 = f1(x) and y
2 = f2(x)

respectively. Set Fi(X,Z) = Z2g+2fi(X/Z) ∈ K[X,Z]. Let k be a field containing
K. The set of k-isomorphisms from C1 to C2 is bijective to(

{h ∈ GL2(k) | F1(h · t(X,Z)) = λ2F2(X,Z) for some λ ∈ k×}/ ∼
)
× {±1},

where we say h1 ∼ h2 if h1 = µh2 for some µ ∈ k×.
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Proof. Let φ be a k-isomorphism from C1 to C2. Let πi be morphisms from Ci to
P1 of degree 2 (chosen over K as above). The composition π2 ◦φ is a morphism
C1 to P1 of degree 2 over k. The uniqueness of such morphisms implies that
there exists a k-automorphism ψ of P1 commuting the diagram

C1
φ−−−−→ C2

π1

y yπ2

P1 ψ−−−−→ P1

The automorphism ψ is represented by an element h ∈ GL2(k) up to scalar
multiplications. Clearly φ sends the different ideal d1 of k(C1)/k(P

1) to the
different ideal d2 of k(C2)/k(P

1), whence the generator y of d1 of the equation
y2 = f1(x) defining C1 is sent to that of d2 up to a scalar multiplication. Thus,
for some scalar λ ∈ k× we have the equation

F1((X,Z) · th) = λ2F2(X,Z). (3)

Conversely for h =

a b
c d

 ∈ GL2(k) satisfying (3) for some λ ∈ k×, we have

the two isomorphisms C1 → C2 defined by (x, y) 7→
(
ax+b
cx+d ,±λ

y
(cx+d)g+1

)
. ⊓⊔

2.2 Superspecial curves and maximal curves

Let C be a nonsingular projective curve over a perfect field K. We say that C is
superspecial if its Jacobian Jac(C) is the product of some supersingular elliptic
curves over the algebraic closure K. It is well-known that C is superspecial if
and only if the Cartier operator on the cohomology group H0(C,Ω1

C) is zero
(cf. [20]). The Cartier operator on H0(C,Ω1

C) with respect to a fixed basis of
H0(C,Ω1

C) is called a Cartier-Manin matrix of C, which for hyperelliptic curves
will be reviewed in the next subsection.

As mentioned in the introduction, it is known that any superspecial hyper-
elliptic curve over an algebraically closed field can descend to a maximal curve
over Fp2 and also to a minimal curve over Fp2 . This is deduced from the following
facts.

1. If C is hyperelliptic, then the automorphism group of C is isomorphic to
the automorphism group of the Jacobian variety Jac(C) with the principal
polarization of C. This fact implies that giving a descent datum of C is
equivalent to giving that of its Jacobian with the principal polarization.

2. For superspecial C, by definition we have Jac(C) ≃ Eg for a supersingular
elliptic curve E, where g is the genus of C. It is known that E descends to
an elliptic curve E0 over Fp2 over which the Frobenius is the multiplication
by p and −p respectively.
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3. A polarization on Eg is, by definition, a homomorphism from Eg to its dual
(which is isomorphic to Eg), but such a homomorphism is always defined
over Fp2 , i.e., is induced from an Fp2 -homomorphism from Eg0 to itself.

See the proof of [4, Theorem 1.1] and [18, 1.2] for the second and third facts.
The second and third facts imply that Jac(C) with the principal polarization
descend to Fp2 with the Frobenius is p and −p respectively. By the first fact,
C descends to a curve C0 over Fp2 such that the Frobenius on the first étale
cohomology group H1

ét(C0,Zl) for a prime l ̸= p is the multiplication by p and
−p respectively. The curve C0 is minimal in the former case and is maximal in
the latter case.

Thus, we conclude that the existence of a superspecial hyperelliptic curve of
genus g in characteristic p implies the existence of a maximal curve of genus g
over Fp2 and that of a minimal curve of genus g over Fp2 .

2.3 Cartier-Manin matrices of hyperelliptic curves

As in the previous subsection, let K be a perfect field of odd characteristic
p > 0. The Cartier-Manin matrix of a curve C over K is defined as the ma-
trix representing the Cartier operator on H0(C,Ω1

C), see [26, Section 2]. Here
H0(C,Ω1

C) is the space of holomorphic differentials of C. In the following propo-
sition, we introduce a well-known method (cf. [7], [19], [26, Section 2]) to obtain
the Cartier-Manin matrix of a hyperelliptic curve.

Proposition 1. Let C be a hyperelliptic curve y2 = f(x) of genus g over K,
where d = deg(f) is either 2g + 1 or 2g + 2. Then the Cartier-Manin matrix of
the hyperelliptic curve C is the g × g matrix whose (i, j)-entry is the coefficient
of xpi−j in f (p−1)/2 for 1 ≤ i, j ≤ g.

As we have seen in §2.2, a non-singular curve is superspecial if and only if
its Cartier-Manin matrix is the zero matrix. From Proposition 1, we have the
following corollary. By this corollary, one can decide whether a given hyperelliptic
curve is superspecial or not by computing its Cartier-Manin matrix.

Corollary 1. Let C be a hyperelliptic curve y2 = f(x) of genus g over K. Then
C is superspecial if and only if the coefficients of xpi−j in f (p−1)/2 are equal to
0 for all positive integers 1 ≤ i, j ≤ g.

3 Enumeration of superspecial hyperelliptic curves

Let K = Fq be a finite field of odd characteristic p, where q is a power of p. In
this section, we give algorithms to enumerate superspecial hyperelliptic curves
and to determine their isomorphism classes. As we mentioned in §1 and §2.2, a
curve overK is superspecial if and only if its Cartier-Manin matrix is zero. Recall
from Proposition 1 of §2.3 that the Cartier-Manin matrix of a hyperelliptic curve
y2 = f(x) of genus g with deg(f) = 2g + 1 or 2g + 2 is determined from certain
coefficients in the multiple f (p−1)/2.
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In this section, we give three computational techniques for determining the
isomorphism classes of superspecial hyperelliptic curves of genus g over finite
fields: (A) Algorithm to enumerate superspecial hyperelliptic curves, (B) Reduc-
tion of defining equations of hyperelliptic curves, and (C) Isomorphism testing.
Specifically, based on Corollary 1, we shall reduce our enumeration problem into
a computational problem that we solve multivariate systems over finite fields.

3.1 (A): Algorithm to enumerate superspecial hyperelliptic curves

Recall from §2.1 that a hyperelliptic curve of genus g over K is given by the
equation y2 = f(x) for some polynomial f of degree 2g + 2 with non-zero dis-
criminant. Write f(x) = adx

d + ad−1x
d−1 + ad−2x

d−2 + · · · + a1x + a0 with
ak ∈ K for 0 ≤ k ≤ d. Let S be the set of the coefficients of the g2 monomi-
als in f(x)(p−1)/2 given in Proposition 1. Based on Proposition 1 together with
Corollary 1, we give a strategy to enumerate superspecial hyperelliptic curves of
genus g over K:

• Enumerate (a0, . . . , ad) ∈ Kd+1 such that all elements of S are zero and such
that the discriminant of f(x) is not zero.

In other words, by regarding all elements of S as algebraic relations on ai’s,
it suffices to compute all roots (a0, . . . , ad) ∈ Kd+1 of the multivariate system
P = 0 for all P ∈ S ⊂ K[a0, . . . , ad] such that f has no double root in the
algebraic closure K. Here, we show a concrete method (Enumeration Method
below) for the enumeration, and write down its pseudocode in Algorithm 1.
This method is viewed as a hyperelliptic curve-version of algorithms given in
[14], [16] and [17] for non-hyperelliptic curves.

Enumeration Method. With notation as above, we conduct the following:

0. Regard some unknown coefficients in f(x) as indeterminates. Choose an
integer 0 ≤ s1 ≤ d + 1. For simplicity, let a0, . . . , as1−1 be indeterminates
here. The remaining part (as1 , . . . , ad) runs through K

⊕d+1−s1 .

For each element (cs1 , . . . , cd) ∈ K⊕d+1−s1 , proceed with the following four steps:

1. Put

f(x) := cdx
d + cd−1x

d−1 + · · ·+ cs1x
s1 + as1−1x

s1−1 + · · ·+ a1x+ a0.

Compute h := fp−1 over K[a0, . . . , as1−1][x].
2. Let S be the set of the coefficients of the g2 monomials in h = fp−1, given

in Proposition 1. Note that S ⊂ K[a0, . . . , as1−1].
3. Regard some unknown coefficients among a0, . . . , as1−1 as indeterminates.

For simplicity, let a0, . . . , as2−1 with s2 ≤ s1 be indeterminates here. The
remaining part (as2 , . . . , as1−1) runs through K

⊕s1−s2 .
4. For each (cs2 , . . . , cs1−1) ∈ K⊕s1−s2 , proceed with the following three steps

4a – 4c:
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Algorithm 1 Algorithm to enumerate superspecial hyperelliptic curves

Input: An integer g, a prime number p, and q = ps for some s ≥ 1
Output: The set F of polynomials f(x) over K = Fq of degree 2g + 2 such that the

curves y2 = f(x) are superspecial hyperelliptic curves of genus g
1: F ← ∅
2: d ← 2g + 2
3: Choose an integer 0 ≤ s1 ≤ d+ 1 and let a0, . . . , as1−1 be indeterminates
4: for (cs1 , . . . , cd) ∈ K⊕d+1−s1 do
5: f(x) ← cdx

d + cd−1x
d−1 + · · ·+ cs1x

s1 + as1−1x
s1−1 + · · ·+ a1x+ a0

6: Compute h := f (p−1)/2 over K[a0, . . . , as1−1][x]
7: S ← the set of the coefficients of the g2 monomials in h, given in Proposition 1.
8: Choose an integer 0 ≤ s2 ≤ s1
9: for (cs2 , . . . , cs1−1) ∈ K⊕s1−s2 do
10: S ′ ← {P (a0, . . . , as2−1, cs2 , . . . , cs1−1) : P ∈ S}
11: Compute the roots of the system (4) over K (with Gröbner basis algorithms)
12: V ← {(c0, . . . , cs2−1) ∈ K⊕s2 : P ′(c0, . . . , cs2−1) = 0 for all P ′ ∈ S ′}
13: for (c0, . . . , cs2−1) ∈ V do
14: fsol ← cdx

d + cd−1x
d−1 + · · ·+ cs2x

s2 + cs2−1x
s2−1 + · · ·+ c1x+ c0

15: Decide whether fsol has no double root in K or not (this can be done by
constructing the minimal splitting field of fsol)

16: if fsol has no double root in K then
17: F ← F ∪ {fsol}
18: end if
19: end for
20: end for
21: end for
22: return F

4a. For each P ∈ S, substitute respectively cs2 , . . . , cs1−1 into as2 , . . . , as1−1

of the coefficients in P . Put

S ′ := {P (a0, . . . , as2−1, cs2 , . . . , cs1−1) : P ∈ S}.

Note that S ′ ⊂ K[a0, . . . , as2−1].
4b. Compute the roots of the multivariate system

P ′(a0, . . . , as2−1) = 0 for all P ′ ∈ S ′ (4)

over K with Gröbner basis algorithms.
4c. For each root of the above system, substitute it into unknown coefficients

in f , and decide whether f has no double root in K or not (this can be
done by constructing the minimal splitting field of f). If f has no double
root in K, store f .

Remark 2. Our enumeration method adopts the hybrid approach by Bettale,
Faugère and Perret [1] to solve multivariate systems over finite fields. In their
approach, exhaustive search and Gröbner basis algorithms are mixed for effi-
ciency, but there is a trade-off between them. Note that an optimal choice of
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coefficients to be regarded as indeterminants is not unique, and deeply depends
on the situation. In our case, such a choice is heuristically decided from experi-
mental computations for each situation (Propositions 2 – 6 in the next section).

3.2 (B): Reduction of defining equations of hyperelliptic curves

In this subsection, we give a reduction of defining equations of hyperelliptic
curves. Let C be a hyperelliptic curve over K. Let y2 = f(x) be a defining
equation of C. Remark that a good method of reduction over an algebraically
closed field is to translate three ramified points of the corresponding morphism
C → P1 of degree 2 to {0, 1,∞}, but we can not adopt this method, because
the ramified points are not necessarily K-rational points. In this paper we use
an elementary reduction:

Lemma 2. Assume that p and 2g + 2 are coprime. Let ϵ ∈ K× ∖ (K×)2. Any
hyperelliptic curve C of genus g over K is the desingularization of the homoge-
nization of

cy2 = x2g+2 + bx2g + a2g−1x
2g−1 + · · ·+ a1x+ a0

for ai ∈ K for i = 0, 1, . . . , 2g − 1 where b = 0, 1, ϵ and c = 1, ϵ.

Proof. As in §2.1, a hyperelliptic curve C over K is realized as y2 = f(x) for a
polynomial f(x) of degree 2g+2 over K. This can be expressed as cy2 = h(x) for
c ∈ K× and for a monic polynomial h(x) of degree 2g + 2 over K. Considering
the transformation (x, y) 7→ (x, αy) for some α ∈ K×, one may assume c = 1
or ϵ. Considering x → x + a, we can transform h(x) to a polynomial with no
x2g+1-term, i.e., we may assume C is defined by an equation of the form

cy2 = x2g+2 + a2gx
2g + a2g−1x

2g−1 + · · ·+ a1x+ a0.

The transformation (x, y) 7→ (βx, βg+1y) for some β ∈ K× and the multiplica-
tion by β−(2g+2) to the whole, we may assume that a2g = 0, 1 or ϵ.

Remark 3. Let h(x) be a monic polynomial over K with non-zero discriminant.
Let ϵ ∈ K× ∖ (K×)2. Let C1 and C2 be the hyperelliptic curves defined by
y2 = h(x) and ϵy2 = h(x) respectively. The transformation (x, y) 7→ (x,

√
ϵy)

gives an isomorphism from C1 to C2 over K[
√
ϵ]. In particular, C1 is superspecial

if and only if C2 is superspecial.

3.3 (C): Isomorphism testing

We suppose that p and 2g+2 are coprime. Let C1 and C2 be hyperelliptic curves
of genus g over K. As we showed in §2.1 and in Lemma 2, defining equations
of C1 and C2 are given by H1(x, y) = c1y

2 − f1(x) and H2(x, y) = c2y
2 − f2(x)

respectively for some c1 and c2 in K× and for some polynomials f1(x) and f2(x)
in K[x] of degree 2g + 2. Let Fi denote the homogenization of fi with respect
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to an extra variable z for each 1 ≤ i ≤ 2. By Lemma 1, we have a fact that C1

and C2 are isomorphic over K if and only if there exists h ∈ GL2(K) such that
h ·F1 = λ2F2 for some λ ∈ K×. In other words, there exist h ∈ GL2(K) and λ ∈
K× such that all the coefficients in F := h·F1−λF2 are zero, where h·F1(x, z) :=
F1((x, z) · th). Based on this fact, we write down a method (Isomorphism Testing
Method below) to determine whether C1 and C2 are isomorphic over K (or over
K) for K = Fq. Here q is a power of the characteristic p of K. The correctness
of this computational method is straightforward from its construction.

Isomorphism Testing Method. For the inputsH1(x, y) = c1y
2−f1(x),H2(x, y) =

c2y
2−f2(x), and q as above, the following 5 steps decide whether C1 : H1(x, y) =

0 and C2 : H2(x, y) = 0 are isomorphic over K or not (resp. K or not):

1. Let b1, b2, b3, b4, b5, λ and µ be indeterminates, and set

Fi(x, z) := c−1
i z2g+2fi(x/z) for i = 1, 2, and h :=

b1 b2
b3 b4


where h is a square matrix whose entries are indeterminates.

2. Compute F (x, z) := F1((x, z) · th) − λ2F2(x, z) over the polynomial ring
K[b1, b2, b3, b4, b5, λ, µ][x, z] whose coefficient ring is also a polynomial ring.

3. Let CF be the set of the coefficients of the non-zero terms in F (x, z). We put

C := CF ∪ {(b1b4 − b2b3)b5 − 1} ∪ {λµ− 1},

and C′ := C ∪ {bqi − bi : 1 ≤ i ≤ 4} ∪ {λq − λ} (resp. C′ := C). Note that
b1b4 − b2b3 = det(g).

4. Test whether the multivariate system defined by the ideal ⟨C′⟩ has a root
over K (resp. K) or not. One can do this by computing the reduced Gröbner
basis in K[b1, b2, b3, b4, b5, λ, µ] with respect to some term order.

5. If the system in Step 4 has a root over K (resp. K), then C1 : H1(x, y) = 0
and C2 : H2(x, y) = 0 are isomorphic over K (resp. K). Otherwise C1 and
C2 are not isomorphic over K (resp. K).

4 Main results

In this section, we prove Theorems 1 – 3 stated in §1. As an application of the
theorems, we also found hyperelliptic curves of genus 4 over Fq such that they
are maximal as curves over Fp2 for q = 17, 172 and 19. We choose a primitive
element ζ of Fq for each 17, 172 and 19. Specifically, we take ζ = 3 for q = 17,
ζ = −8 +

√
61 for q = 172, and ζ = 2 for q = 19.

4.1 Proofs of and corollaries of the main theorems

In the following proofs, we use computational results, which shall be given in
the next subsection (§4.2).
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Proofs of Theorems 1 – 3. We here prove the case of q = 112 only since the
other cases are proved by a similar idea together with Propositions 3 – 6. Let C
be a hyperelliptic curve of genus g = 4 over K = Fq. Since p = 11 is coprime to
2g+2 = 2 · 4+ 2 = 10, it follows from Lemma 2 that C is given by y2 − f(x) or
ϵy2 − f(x) for ϵ ∈ K× ∖ (K×)2. Here f(x) is a polynomial of the form

f(x) = x10 + a8x
8 + a7x

7 + · · ·+ a1x+ a0

for some ai ∈ K with 0 ≤ i ≤ 8 such that it has no double root over the algebraic
closure K. By Proposition 2 in the next subsection (§4.2), there does not exist
such an f(x) that C : y2 = f(x) is superspecial. It follows from Remark 3 that
there is no such an f(x) that C : ϵy2 = f(x) is superspecial. ⊓⊔

Some Corollaries By Theorem 1, we relax the restriction on non-hyperelliptic
curves in [16, Theorem B] (or [17, Main Theorem]).

Corollary 2. There exist precisely 30 (resp. 9) superspecial curves of genus 4
over F11 up to isomorphism over F11 (resp. the algebraic closure of F11).

Since a maximal or minimal (hyperelliptic) curve over Fp2 is superspecial, we
have the following corollaries (Corollaries 3 and 4 below) from Theorem 1:

Corollary 3. There does not exist any maximal (resp. minimal) hyperelliptic
curve of genus 4 over F121.

Corollary 4. There does not exist any maximal (resp. minimal) hyperelliptic
curve of genus 4 over F169.

In contrast to the cases of p ≤ 13, it is shown in Theorems 2 and 3 that there
exist superspecial hyperelliptic curves of genus 4 over Fp and Fp2 in the cases
of p = 17 and 19. Computing the number of rational points of the enumerated
curves by a computer, we have the following corollaries.

Corollary 5. There exists precisely 2 (resp. 2) maximal (resp. minimal) hyper-
elliptic curves of genus 4 over F172 up to isomorphism over F172 .

Corollary 6. There exist maximal hyperelliptic curves of genus 4 over F192 .
There also exists a minimal hyperelliptic curve of genus 4 over F192 .

Maximal curves and minimal curves in Corollaries 5 and 6 will be introduced
in §4.3.

4.2 Computational parts of our proofs of the main theorems

We show computational results for the proofs of the main theorems. The com-
putational results are proved by executing Enumeration Method in §3.1 and
Isomorphism Testing Method in §3.3. All our computations were conducted on a
computer with ubuntu 16.04 LTS OS at 3.40 GHz CPU (Intel Core i7-6700) and
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15.6 GB memory We implemented and executed the computations over Magma
V2.22-7 [2] in its 64-bit version.

In Propositions 2, 3, 4, 5 and 6, below, we show our computational results
for q = 112, 132, 17, 172 and 19, respectively. We give a computational proof of
Proposition 5 only, and omit those of the other propositions since our computa-
tional settings in all the proofs are almost the same (our proofs of Propositions
2, 3, 4 and 6 will be given in a separated pdf [15]). We also note that the enu-
meration for q = 172 is more expensive than those for q = 112, 132, 17 and 19
due to the largest cardinality of Fq.

Proposition 2. Consider the polynomial f(x) ∈ F121[x] of the form

f(x) = x10 + a8x
8 + a7x

7 + · · ·+ a1x+ a0 (5)

for ai ∈ F121 with 0 ≤ i ≤ 8. Then there does not exist (a0, . . . , a8) ∈ (F121)
⊕9

such that C : y2 = f(x) is a superspecial hyperelliptic curve of genus 4 over F121.

Proposition 3. Consider the polynomial f(x) ∈ F169[x] of the form

f(x) = x10 + a8x
8 + a7x

7 + · · ·+ a1x+ a0 (6)

for ai ∈ F169 with 0 ≤ i ≤ 8. Then there does not exist (a0, . . . , a8) ∈ (F169)
⊕9

such that C : y2 = f(x) is a superspecial hyperelliptic curve of genus 4 over F169.

Proposition 4. Consider the polynomial f(x) ∈ F17[x] of the form

f(x) = x10 + a8x
8 + a7x

7 + · · ·+ a1x+ a0, (7)

for ai ∈ F17 with 0 ≤ i ≤ 8. Then there exist precisely 5 (resp. 2) superspecial
hyperelliptic curves C : cy2 = f(x) with c = 1 or ϵ, up to isomorphism over F17

(resp. the algebraic closure of F17), such that f(x) are of the form (7). Here ϵ is
an element of F×

17 ∖ (F×
17)

2. Representatives of the 5 isomorphisms classes over
F17 are given by

1. y2 = x10 + x,
2. y2 = x10 + x7 + 13x4 + 12x,
3. y2 = x10 + x7 + 14x6 + 6x5 + 12x3 + 5x2 + 7x+ 6,
4. y2 = x10 + x8 + x7 + 15x6 + 4x5 + 12x4 + 15x3 + 11x2 + 9x+ 4, and
5. y2 = x10 + x8 + 2x7 + 9x5 + x4 + 10x3 + 8x2 + 11x+ 16y2 + 5,

and those of the 2 isomorphism classes over the algebraic closure are given by

1. y2 = x10 + x, and
2. y2 = x10 + x7 + 13x4 + 12x.

Proposition 5. Consider the polynomial f(x) ∈ F172 [x] of the form

f(x) = x10 + a8x
8 + a7x

7 + · · ·+ a1x+ a0, (8)

for ai ∈ K = F172 with 0 ≤ i ≤ 8. Then there exist precisely 25 (resp. 2) super-
special hyperelliptic curves C : cy2 = f(x) with c = 1 or ϵ, up to isomorphism
over F172 (resp. the algebraic closure of F172), such that f(x) are of the form
(8).

12



Proof. We prove the assertion by executing Enumeration Method (Algorithm 1
for its pseudocode) and Isomorphism Testing Method given in §3.1 and §3.3 re-
spectively. We first conduct Enumeration Method. In the following, we describe
details of our computation, and also show our choices of coefficients to be re-
garded as indeterminates and a term ordering in the algorithm.

0. We regard the s1 := 8 coefficients ai for 0 ≤ i ≤ 7 as indeterminates. For
the Gröbner basis computation in F172 [a0, a1, a2, a3, a4, a5, a6, a7] below, we
adopt the graded reverse lexicographic (grevlex) order with a7 ≺ a6 ≺ a5 ≺
a4 ≺ a3 ≺ a2 ≺ a1 ≺ a0.

For each c8 ∈ {0, 1, ζ}, we proceed with the following four steps:

1. Put f(x) := x10 + c8x
8 + a7x

7 + · · ·+ a1x+ a0, and compute h := fp−1 over
F172 [a0, . . . , a7][x].

2. Let S be the set of the coefficients of the g2 monomials in h = fp−1, given
in Proposition 1. Note that S ⊂ F172 [a0, . . . , a7].

3. We regard 6 unknown coefficients in f as indeterminates. Specifically, we
keep a0, . . . , a5 being indeterminates, whereas we substitute some elements
of F172 into a6 and a7 in the next step.

4. For each (c6, c7) ∈ (F172)
⊕2, proceed with the following three steps 4a – 4c:

4a. For each P ∈ S, substitute (c6, c7) into (a6, a7) of the coefficients in P .
Put S ′ := {P (a0, . . . , a5, c6, c7) : P ∈ S}. Note that S ′ ⊂ F172 [a0, . . . , a5].

4b. Compute the roots of the multivariate system P ′(a0, . . . , a5) = 0 for all
P ′ ∈ S ′ over F172 with Gröbner basis algorithms.

4c. For each root (c0, . . . , c5) of the system constructed in Step 4b, substitute
it into unknown coefficients in f . Namely, we set fsol := x10 + c8x

8 +
c7x

7 + · · · + c1x + c0. Decide whether fsol has no double root in the
algebraic closure or not (this can be done by constructing the minimal
splitting field of fsol). If fsol has no double root in the algebraic closure,
store fsol.

As a computational result, we obtain the set F of all the polynomials f(x)
of the form (8) such that C : y2 = f(x) are superspecial hyperelliptic curves
of genus 4 over F172 . Put H0 := {cy2 − f(x) : c = 1, ϵ and f(x) ∈ F}. For
each pair (H1,H2) of elements in H0 with H1 ̸= H2, we execute Isomorphism
Testing Method given in §3.3. We obtain a subset H ⊂ H0 such that for each
pair (H1,H2) of elements in H with H1 ̸= H2, the two hyperelliptic curves
C1 : H1(x, y) = 0 and C2 : H2(x, y) = 0 are not isomorphic over F172 . The
obtained set H consists of 25 elements. This shows the assertion over F172 .
Similarly, by executing Isomorphism Testing Method again for pairs of elements
in H, we obtain representatives of the isomorphism classes over the algebraic
closure of F172 . The resulting set consists of 2 elements. ⊓⊔

Proposition 6. Consider the polynomial f(x) ∈ F19[x] of the form

f(x) = x10 + a8x
8 + a7x

7 + · · ·+ a1x+ a0 (9)
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for ai ∈ F19 with 0 ≤ i ≤ 8. Then there exist precisely 12 (resp. 2) superspecial
hyperelliptic curves C : cy2 = f(x) with c = 1 or ϵ, up to isomorphism over
F19 (resp. the algebraic closure of F19), such that f(x) are of the form (9).
Representatives of the 12 isomorphisms classes over F19 are given by

1. y2 = x10 + 1,
2. y2 = x10 + 2,
3. y2 = x10 + x7 + 4x6 + 15x5 + 6x4 + 8x3 + 5x2 + 12x+ 1,
4. y2 = x10 + x8 + 7x6 + x4 + x2 + 7,
5. y2 = x10 + x8 + x7 + 12x6 + x5 + 10x4 + 9x3 + 8x2 + 9x+ 3,
6. y2 = x10 + x8 + x7 + 13x6 + 9x5 + 14x4 + 4x3 + 11x2 + 3x+ 8,
7. y2 = x10 + x8 + 2x7 + 6x6 + 18x5 + 4x4 + 13x3 + 18x2 + 10x+ 14,
8. y2 = x10 + x8 + 2x7 + 12x6 + 18x4 + 5x3 + x2 + 7,
9. y2 = x10 + x8 + 4x7 + 8x6 + 8x5 + 3x4 + 11x3 + 8x2 + 8x+ 4,

10. y2 = x10 + 2x8 + 9x6 + 8x4 + 16x2 + 15,
11. y2 = x10 + 2x8 + x7 + 12x6 + 9x5 + 2x3 + 4x2 + 7x+ 4, and
12. y2 = x10 + 2x8 + 3x7 + 17x6 + 9x5 + 2x3 + 12x2 + 2x+ 4,

and those of the 2 isomorphism classes over the algebraic closure are given by

1. y2 = x10 + 1, and
2. y2 = x10 + x7 + 4x6 + 15x5 + 6x4 + 8x3 + 5x2 + 12x+ 1.

Remark 4. 1. We have explicit defining equations of the 25 superspecial curves
in Proposition 5 but omit them in the statement. See a table at [27] for the
equations.

2. The source codes and the log files together with detailed information on
timing are available at [27].

3. In our implementations, we used the Magma function Variety to solve multi-
variate systems over finite fields. We also used FactorisationOverSplittingField
in order to decide whether a univariate polynomial over a finite field has no
double root or not.

4.3 Application to finding maximal curves and minimal curves

We found maximal curves and minimal curves over Fp2 for p = 17 and 19 among
enumerated superspecial hyperelliptic curves, see also a table on the web page of
the first author [27]. We here introduce several explicit equations (cf. the example
Ca given in §1 is included in one of the F17-isomorphism classes of superspecial
hyperelliptic curves over F17 enumerated in Proposition 4).

1. Recall from Corollary 5 that there exist precisely 2 (resp. 2) maximal (resp.
minimal) hyperelliptic curves over F172 up to isomorphism over F172 . Specif-
ically, the two maximal curves are given by y2 = x10 + x and y2 = x10 +
x7 + 13x4 + 12x, respectively. The two minimal curves are given by

y2 = x10 + x8 + ζ16x7 + ζ83x6 + ζ276x5 + ζ164x4 + ζ102x3 + ζ111x2 + ζ2x+ ζ152,

y2 = x10 + x8 + ζ22x7 + ζ250x6 + ζ89x5 + ζ182x4 + ζ9x3 + ζ225x2 + ζ282x+ ζ113
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respectively, where we take ζ = −8 +
√
61 ∈ F172 . The above four equations

are obtained in Proposition 5 as representatives of the F172 -isomorphism
classes of the superspecial hyperelliptic curves of genus 4 over F172 .

2. There exist maximal curves and minimal curves over F192 , see Corollary 6.
Specifically, the following hyperelliptic curves (1) – (5) are maximal as curves
over F192 : (1) y

2 = x10+1, (2) y2 = x10+2, (3) y2 = x10+x7+4x6+15x5+
6x4 + 8x3 + 5x2 + 12x + 1, (4) y2 = x10 + x8 + 7x6 + x4 + x2 + 7, and (5)
y2 = x10 + 2x8 + 9x6 + 8x4 + 16x2 + 15. On the other hand, the following
curve is minimal: (6) y2 = x10 + x8 + 2x7 + 12x6 + 18x4 + 5x3 + x2 + 7.
The above six equations are listed in Proposition 6 as representatives of the
F19-isomorphism classes of the superspecial hyperelliptic curves of genus 4
over F19.

Remark 5. 1. We have that 3 of the defining equations listed in Proposition 4
define maximal curves over F172 , but omit them here (cf. [27]).

2. Note that the maximal hyperelliptic curve y2 = x10 + x (resp. y2 = x10 +1)
over F172 (resp. F192) is of known type, see e.g., [23] for more general results
on the existence of such a kind of maximal hyperelliptic curves.

5 Concluding remark

We enumerated the isomorphism classes of superspecial hyperelliptic curves of
genus 4 over finite fields Fq for q = 11, 112, 13, 132, 17, 172 and 19. Specifi-
cally, the enumerations were theoretically reduced into computational problems.
To solve the problems in real time, we proposed three computational methods.
With our methods, we have succeeded in finishing all required computations
within a day in total. Our computational results show the non-existence of a su-
perspecial hyperelliptic curve in characteristic p = 11 and 13. They also provide
explicit defining equations for the enumerated superspecial hyperelliptic curves
in characteristic p = 17 and 19. Many of them are maximal curves over F172

and F192 , respectively. Indeed, we found that 3 (resp. 2) among the 5 (resp. 25)
superspecial curves over F17 (resp. F172) are maximal curves over F172 , and that
5 among the 12 superspecial curves over F19 are those over F192 .
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