
FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING

ELLIPTIC CURVES

ANAND KUMAR NARAYANAN1

Abstract. We propose a randomized algorithm to compute isomorphisms between finite fields using
elliptic curves. To compute an isomorphism between two fields of cardinality qn, our algorithm takes

n1+o(1) log1+o(1) q + max
`

(
`n`+1+o(1) log2+o(1) q + O(` log5 q)

)
time, where ` runs through primes dividing n but not q(q − 1) and n` denotes the highest power of `
dividing n. Prior to this work, the best known run time dependence on n was quadratic. Our run time
dependence on n is at worst quadratic but is subquadratic if n has no large prime factor. In particular,
the n for which our run time is nearly linear in n have natural density at least 3/10. The crux of
our approach is finding a point on an elliptic curve of a prescribed prime power order or equivalently
finding preimages under the Lang map on elliptic curves over finite fields. We formulate this as an open
problem whose resolution would solve the finite field isomorphism problem with run time nearly linear
in n.

1. Introduction

1.1. Computing Isomorphisms between Finite Fields. Every finite field has prime power car-
dinality, for every prime power there is a finite field of that cardinality and every two finite fields of
the same cardinality are isomorphic. This now well known result due to Moore [Moo1889] poses two
algorithmic problems. The first concerns field construction: given a prime power, construct a finite
field of that cardinality. The second is the isomorphism problem: compute an isomorphism between
two explicitly presented finite fields of the same cardinality.

Field construction is performed by constructing an irreducible polynomial of appropriate degree over
the underlying prime order field, with all known efficient unconditional constructions requiring ran-
domness. The fastest known construction, due to Couveignes and Lercier [CL13] uses elliptic curve
isogenies. In practice, a polynomial is chosen at random and tested for irreducibility [Ben81]. Such
non canonical construction of finite fields motivates the isomorphism problem in several applications.
For instance in cryptography, the discrete logarithm problem over small characteristic finite fields is
often posed over fields constructed using random irreducible polynomials. In cryptanalysis, the quasi-
polynomial algorithm [BGJT14] for discrete logarithms works over fields constructed using irreducible
polynomials of a special form. An isomorphism computation is thus required as a preprocessing step
in cryptanalysis.

Zierler noted that the isomorphism problem reduces to root finding over finite fields and hence has effi-
cient randomized algorithms [Zie74]. Remarkably, the isomorphism problem was shown to be in deter-
ministic polynomial time by Lenstra [Len87]. Allombert [All02] proposed a linear algebraic randomized
algorithm, close in spirit with Lenstra’s algorithm but markedly faster. Employing the (randomized)
polynomial factorization algorithm of Kaltofen and Shoup [KS99] (implemented using Kedlaya-Umans
fast modular composition [KU08]) to find roots, Zierler’s approach yields the fastest previously known
algorithm for computing isomorphisms. Our main result is an algorithm with improved run time in

Supported by NSF grant #CCF-1423544 and European Union’s H2020 Programme (grant agreement #ERC-669891).
1 Laboratoire d’Informatique de Paris 6, Sorbonne Universite, Paris.
E-mail address: anand.narayanan@lip6.fr.

1

2 FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES

most cases.

An alternate approach relying on cyclotomy instead of root finding was introduced by Pinch [Pin92]
and improved upon by Rains [Rai08] to give the fastest algorithm in practice. The cyclotomic method
of Pinch requires that the finite fields in question contain certain small order roots of unity. To remove
this requirement, Pinch [Pin92] proposed using elliptic curves over finite fields. This way, instead of
roots of unity, one seeks rational points of small order on elliptic curves. Our algorithm, although very
different, relies on elliptic curves as well. We take inspiration from the aforementioned algorithm of
Couveniges and Lercier [CL13]. While [CL13] used elliptic curve isogenies to solve field construction
in nearly linear time, we solve the isomorphism problem. Our algorithm may also be viewed as an
extension of Allombert’s [All02] using elliptic curves.

A critical component of our approach is a method to reduce the isomorphism problem for arbitrary
degrees to prime power degrees in nearly linear time. The reduction is mostly subtle linear algebra
and similar to a theorem of Shoup [Sho95][Theorem 5]∗. We invoke elliptic curves only to solve the
prime power cases.

Soon after posting a preprint version of the current paper online [Nar2016], I was informed of concur-
rent related work that later appeared here [BDDFS17]. Therein Brieulle, De Feo, Doliskani, Flori and
Schost address the very same isomorphism problem (and more generally finite field embedding prob-
lems) using elliptic curve based techniques similar to ours. In contrast to our emphasis on establishing
complexity theoretic bounds on the isomorphism problem, their goals are directed towards obtaining
fast practical algorithms. In particular, they present an open source implementation of their algorithm
which appears to be the current state of the art in practice.

1.2. Computing Isomorphisms and Root Finding. We formally pose the isomorphism problem
stating the manner in which the input fields and the output isomorphism are represented. Let q be a
power of a prime p and let Fq denote the finite field with q elements. Fix an algebraic closure Fq of Fq
and let σ : Fq −→ Fq denote the qth power Frobenius endomorphism. We consider two finite fields of
cardinality qn to be given through two monic irreducible degree n polynomials f(x), g(x) ∈ Fq[x]. The

fields are then constructed as Fq(α) and Fq(β) where α, β ∈ Fq are respectively roots of f(x), g(x).
Without loss of generality [CL13], all our algorithms assume the base field Fq to be given as the quo-
tient of the polynomial ring over Z/pZ by a monic irreducible polynomial over Z/pZ.

An isomorphism φ : Fq(α) −→ Fq(β) that fixes Fq is completely determined by the image φ(α).
We call the unique rφ(x) ∈ Fq[x] of degree less than n such that φ(α) = rφ(β) as the polynomial rep-
resentation of φ. We are justified in seeking the polynomial representation of φ since given rφ(x), one
may compute the image of an element in Fq(α) under φ in time nearly linear in n using fast modular
composition [KU08]. For an r(x) ∈ Fq[x] of degree less than n, r(x) is the polynomial representation
of an isomorphism from Fq(α) to Fq(β) if and only if r(β) is a root of f(x). Hence the problem of
computing the polynomial representation of an isomorphism that fixes Fq is identical to the following
root finding problem.

Isomorphism Problem: Given monic irreducibles f(x), g(x) ∈ Fq[x] of degree n, find a root of

f(x) in Fq(β) where β ∈ Fq is a root of g(x).

There are two input size parameters, namely n and log q. Prior to our work, the best known run
time was quadratic in n resulting from using [KS99, KU08] to find roots in the Isomorphism Prob-
lem. We are primarily interested in lowering the run time exponent in n. Our run time dependence on

∗We thank an anonymous referee for pointing out the similarity

FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES 3

log q will be polynomial but not optimized for. Here on, all our algorithms are Las Vegas randomized
and by run time we mean expected run time.

1.3. Summary of Results. We present an algorithm for the Isomorphism Problem with run time

n1+o(1) log1+o(1) q + max
`

(
`n`+1+o(1) log2+o(1) q +O(` log5 q)

)
where ` runs through primes dividing n but not q(q − 1) with n` the highest power of ` dividing n.
Evidently, our run time depends on the prime factorization of n. Although at worst quadratic in n,
we next argue it is subquadratic for most n. If n has a large (say Ω(n)) prime factor not dividing
q(q − 1), our running time exponent in n is 2. In all other cases, it is less than 2. Call n with largest

prime factor at most n1/c as n1/c-powersmooth. For n1/c-powersmooth n with 1 < c ≤ 2, our run time
exponent in n is at most 2/c. The natural density of n1/c-powersmooth n tends to the Dickman-de

Bruin function ρ(c) and for 1 < c ≤ 2, ρ(c) = 1 − log c [Gra08]. In particular, n1/1.1-powersmooth n
have density 1− log(1.1) > 9/10. Hence the n with run time exponent in n at most 2/1.1 ≈ 1.8 have

density at least 9/10. Likewise, n1/2-powersmooth n have density at least 3/10. Hence the n with run
time linear in n have density at least 3/10.

The paper is organized as follows. In § 2, the Isomorphism Problem is reduced in linear time
to subproblems, each one corresponding to a prime power `n` dividing n. A key component in the
reduction is a fast linear algebraic algorithm (Lemma 2.1) that takes a polynomial relation between
two α, β ∈ Fq of the same degree and computes a root of the minimal polynomial of α in Fq(β). In § 3,
subproblems corresponding to prime powers `n` such that ` divides q−1 are solved in linear time using
Kummer theory. Likewise, in § 4, subproblems corresponding to powers of the characteristic p are
solved in linear time using Artin-Schreier theory. The key in both these special cases is a new recursive
algorithm to evaluate the action of idempotents in the Galois group ring that appear in the proof of
Hilbert’s theorem 90. In § 5, the generic case of a prime power `n` where ` - (q − 1)p is handled using
an elliptic curve E/Fq with Fq rational ` torsion. The analogue of Hilbert’s theorem 90 in this context
is Lang’s theorem which states that the first cohomology group H1(Fq, E) is trivial [Lan78]. In § 5.2,
the isomorphism problem is reduced to computing discrete logarithms in the Fq rational ` torsion
subgroup of E. The crux of the reduction is to compute a preimage of a non trivial Fq rational ` torsion
point under the Lang map. In § 5.3, we devise a fast algorithm to compute such a preimage using
` isogenies and solve the Isomorphism Problem of degree `n` in `n`+1+o(1) log1+o(1) q + O(` log5 q)
time. In § 5.3, we pose an algorithmic Problem 5.7 concerning Lang’s theorem, a solution to which
would solve the Isomorphism Problem in subquadratic time for all n.

Fast modular composition and fast modular power projection [KU08], key ingredients in our algo-
rithm, are considered impractical with no existing implementations. Practical implications of our
algorithm are thus unclear.

We also extend our algorithm to solve the following more general root finding problem: given a
polynomial over Fq and a positive integer n, find its roots in Fqn (see Remark 2.4). The construction
of Fqn could be given or left to the algorithm. The former allows one to compute embeddings of one
finite field in another.

2. Reduction of the Isomorphism Problem to Prime Power Degrees

For α ∈ Fq, call [Fq(α) : Fq] the degree of α. For α, β ∈ Fq, call α ∼ β if and only if there is an integer
j such that α = σj(β). That is, α ∼ β means they have the same minimal polynomial.

4 FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES

Lemma 2.1. There is an n1+o(1) log1+o(1) q time algorithm that given the minimal polynomial g(x) ∈
Fq[x] of an α ∈ Fq of degree n and f1(x), f2(x) ∈ Fq[x] of degree less than n such that f1(α) is of degree

n, finds an r(x) ∈ Fq[x] such that r(β) is a root of g(x) for all β ∈ Fq satisfying f1(α) ∼ f2(β).

Proof. Since α and f1(α) both have degree n, α is in Fq(f1(α)) and there is a unique h(x) =∑n−1
i=0 hix

i ∈ Fq[x] such that h(f1(α)) = α. We next describe how to compute h(x).

Pick u ∈ Fnq uniformly at random and consider the Fq-linear functional

U : Fq(α) −→ Fq, y 7 −→ uty

where y ∈ Fnq is an element of Fq(α) written in the standard basis (1, α, α2, . . . , αn−1).

Abusing notation, let h = (h0, h1, . . . , hn−1)
t denote the coefficient vector of h(x). We will deter-

mine h(x) by solving the linear system

U(αih(f1(α))) = U(αf1(α)i), i ∈ {0, 1, . . . , 2n− 2}
in its coefficients. Let A be the n by 2n−1 matrix whose ith column consists of f1(α)i−1 written in the
standard basis. Multiplication by α is an Fq linear transformation on Fq(α) with matrix representation
on the standard basis being the companion matrix

X :=


0 0 0 . . . 0 −g0
1 0 0 . . . 0 −g1
0 1 0 . . . 0 −g2
...

...
...

. . .
...

...
0 0 0 . . . 1 −gn−1


with respect to g(x) =

∑n−1
i=0 gix

i +xn. Let (a0, a1, . . . , a2n−2) := utA and (b0, b1, . . . , b2n−2) := utXA.
Since X has at most 2n− 1 non zero coefficients, utX can be computed with number of Fq-operations
bounded linearly in n. Given u, f1(x) and g(x), to compute utA is an instance of the modular power
projection problem. Likewise computing utXA given utX, f1(x) and g(x). By [KU08], each of these

modular power projection instances can be solved in n1+o(1) log1+o(1) q) time. The aforementioned
linear system in matrix form is

(1)


a0 a1 a2 . . . an−1
a1 a2 a3 . . . an
a2 a3 a4 . . . an+1
...

...
...

. . .
...

an−1 an an+1 . . . a2n−2




h0
h1
h3
...

hn−1

 =


b0
b1
b2
...

b2n−2


and by [Sho99] has full rank with probability at least 1/2 for a randomly chosen u. One of its solutions

is the coefficient vector h of the h(x) we seek. Being Toeplitz, in n1+o(1) log1+o(1) q) time, we can test
if it is full rank and if so find the solution h. Once h(x) is found, using [CL13, Corollary 1] to compose
polynomials, within time stated in the lemma, we output h(f2(x)) as r(x). The output is correct since
h(f2(β)) ∼ h(f1(α)) = α. �

Lemma 2.2. There is an algorithm that given the minimal polynomial g(x) ∈ Fq[x] of an α ∈ Fq of
degree m and a positive integer n dividing m, finds an element αn ∈ Fq(α) of degree n and its minimal

polynomial over Fq in time m1+o(1) log2+o(1) q.

Proof. Pick β ∈ Fq(α) uniformly at random and set αn :=
∑m/n−1

i=0 σni(β), the trace of β down to
Fqn ⊆ Fq(α). By iterated Frobenius [vzGS92][KU08], this trace computation can be performed in
the time stated in the lemma. Compute the minimal polynomial M(x) ∈ Fq[x] of αn over Fq using
[Sho99][KU08, § 8.4], again, in time stated in the lemma. If the degree of M(x) is n, output αn and

FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES 5

M(x). Since the trace down to Fqn maps a random element from Fq(α) to a random element in Fqn ,
we succeed with probability at least 1/2. �

We next reduce Isomorphism Problem to itself restricted to prime power input degree.

Lemma 2.3. Let n =
∏
` `
n` be the factorization of n into prime powers. In n1+o(1) log2+o(1) q time,

Isomorphism Problem with inputs of degree n may be reduced to identical problems; one for each
prime ` dividing n with inputs of degree `n`.

Proof. Consider an input f(x), g(x) ∈ Fq[x] to Isomorphism Problem. Let α, β ∈ Fq respectively be
roots of f(x), g(x). Compute the factorization n =

∏
` `
n` of n into prime powers. For each prime `

dividing n, using Lemma 2.2, compute α` ∈ Fq(α) and M`(x) ∈ Fq[x] such that α` has degree `n` and
M` is the minimal polynomial of α`. Likewise compute β` ∈ Fq(β) and N`(x) ∈ Fq[x] such that β` has
degree `n` and N` is the minimal polynomial of β`. Since Fq`n` and Fqn/`n` are linearly disjoint over

Fq, both
∑

`|n α` and
∑

`|n β` have degree n. For each ` dividing n, solve Isomorphism Problem

with input M`(x), N`(x) and find a root β′` of M`(x) in Fq(β`). Now for all ` dividing n, α` ∼ β′`.
Applying Lemma 2.1 to the relation

∑
`|n α` ∼

∑
`|n β

′
`, we solve Isomorphism Problem with input

f(x), g(x). �

Remark 2.4. Consider the problem of finding a root of a degreem polynomial f(x) ∈ Fq[x] in Fqn , where
Fqn is constructed as Fq[x]/(g(x)) for a monic irreducible g(x). Either g(x) is given or constructed in
linear time using [CL13]. We show that this problem reduces to the Isomorphism Problem in time
linear in m and n. In fact, the reduction finds not just one but all the roots of f(x) in an implicit
form. The output is a set of roots of f(x) whose orbit under σ is the set of all roots of f(x). For f(x)
to have a root in Fqn , f(x) has to have an irreducible factor of degree dividing n. Since the number of

factors of n is at most log n, using [KU08], in m1+o(1) log2+o(1) q log1+o(1) n time, we may enumerate all
irreducible factors of f(x) of degree dividing n. For each such irreducible factor h(x), using Lemma 2.2,
identify a subfield of Fqn and find a root h(x) in the subfield by solving the Isomorphism Problem.

3. Root Finding in Kummer Extensions of Finite Fields

Using Kummer theory, we solve the Isomorphism Problem restricted to the case when n is a power
of a prime ` dividing q−1. The novelty here is a fast recursive evaluation of the idempotent appearing
in the standard proof of (cyclic) Hilbert’s theorem 90.

Lemma 3.1. There is an algorithm that given a finite extension L/Fq, an integer m ≤ [L : Fq] and a

ζ ∈ L such that ζ ∈ K := {β ∈ L|σm(β) = β} and ζ [L:K] = 1, finds an α ∈ L such that σm(α) = ζα

in [L : Fq]1+o(1) log2+o(1) q time.

Proof. Since the norm of ζ from L down to K is ζ [L:K] = 1, an α as claimed in the lemma exists by
Hilbert’s theorem 90 applied to the cyclic extension L/K. We next describe an algorithm that finds
such an α in the stated time.

Define τ := ζ−1σm, viewed as a K-linear endomorphism on L. By independence of characters,∑[L:K]−1
i=0 τ i is non zero. Pick θ ∈ L uniformly at random. If

∑[L:K]−1
i=0 τ i(θ) 6= 0 (which happens

with probability at least 1/2), set α =
∑[L:K]−1

i=0 τ i(θ). Since ζ−1 ∈ Fq and ζ−[L:K] = 1,

τ(α) =

[L:K]−1∑
i=0

ζ−iσmi(α) = α⇒ τ(α) = α⇒ ζ−1σm(α) = α⇒ σm(α) = ζα.

We next demonstrate
∑[L:K]−1

i=0 τ i(θ) can be computed fast given θ ∈ L. Our approach is similar to
the iterated Frobenius trace computation of von zur Gathen and Shoup [vzGS92].

6 FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES

Let L be given as Fq(η) for some η ∈ Fq with minimal polynomial g(x) ∈ Fq[x]. By repeated squaring,

in time Õ([L : Fq] log2 q) compute ηq. For a positive integer b, let Σb denote the partial sum
∑b−1

i=0 τ
i(θ).

Our goal is to compute Σ[L:K]. For every positive integer b,

2b−1∑
i=0

τ i(θ) =

b−1∑
i=0

τ i(θ) +

2b−1∑
i=b

τ i(θ) =

b−1∑
i=0

τ i(θ) + τ b

(
2b−1∑
i=0

τ i(θ)

)

(2) ⇒
2b−1∑
i=0

τ i(θ) =

b−1∑
i=0

τ i(θ) + ζ−bσb

(
b−1∑
i=0

τ i(θ)

)
⇒ Σ2b = Σb + ζ−bσbm(Σb).

Given Σb and ηq, σbm(Σb) can be computed in [L : Fq]1+o(1) log1+o(1) q time using the Frobenius rep-
resentation of [vzGS92] and fast modular composition [KU08]. Hence, given Σb, computing Σ2b using

equation 2 takes [L : Fq]1+o(1) log1+o(1) q time, which evidently is independent of b and m.

Set c = blog2[L : K]c and compute Σ2c by successively computing Σ0,Σ2,Σ4, . . . ,Σc using equa-

tion 2. Since c ≤ log2[L : K], this takes [L : Fq]1+o(1) log1+o(1) q time. If [L : K] is not a power of 2,
we recursively compute Σ[L:K]−c. With the knowledge of Σc and Σ[L:K]−c, Σm may be computed in

Õ([L : Fq] log q) time [vzGS92, KU08] as

(3) Σ[L:K] = Σc + ζ−cσmc(Σ[L:K]−c).

Since [L : K]− c ≤ [L : K]/2, at most log2[L : K] recursive calls are made in total. �

We next state the algorithm followed by proof of correctness and implementation details.

Algorithm 1 Root Finding Through Kummer Theory:

Input: Monic irreducibles g1(x), g2(x) ∈ Fq[X] of degree `a where ` is a prime dividing q− 1 and a is
a positive integer.

Output: A root of g1(x) in Fq(β2) where β2 ∈ Fq is a root of g2(x).

1: Find a primitive `th root of unity ζ` ∈ Fq.
2: Construct Fq(β1) ∼= Fq`a where β1 is a root of g1(x).

. Apply lemma 3.1 with
(
L = Fq(β1),m = `a−1, ζ = ζ`

)
and find α1 ∈ Fq(β1) such that

σ`
a−1

(α1) = ζ`α1.

. Compute α`1. (α`1 will have degree `a−1.)
3: Construct Fq(β2) ∼= Fq`a where β2 is a root of g2(x).

. Apply lemma 3.1 with
(
L = Fq(β2),m = `a−1, ζ = ζ`

)
and find α2 ∈ Fq(β2) such that

σ`
a−1

(α2) = ζ`α2.

. Compute α`2. (α`2 will have degree `a−1.)
4: If a = 1,
. Find an e ∈ Fq such that e` = α`1/α

`
2.

. Apply lemma 2.1 to α1 ∼ eα2 and find a root of g1(x) in Fq(β2).
5: If a 6= 1,
. Find the minimal polynomials h1(x), h2(x) over Fq of α`1, α

`
2 respectively.

. Recursively find a root α of h1(x) in Fq(α`2) = Fq[x]/(h2(x)). (h1(x) and h2(x) have degree `a−1.)

. Find a γ ∈ Fq(α`2) such that γ` = α/α`2.

. Apply lemma 2.1 to α1 ∼ γα2 and find a root of g1(x) in Fq(β2).

FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES 7

We next argue that Algorithm 1 runs to completion and is correct.

Since ` divides q − 1, there is a primitive `th root of unity in Fq, as required in Step 1.

In Step 2, α`1 is claimed to have degree `a−1. Let b be the degree of α`1. Since

σ`
a−1

(α`1) =
(
σ`

a−1
(α1)

)`
= ζ``α

`
1 = α`1,

b divides `a−1. Since σb(α`1) = α`1, σ
b(α1)/α1 is an `th root of unity. Thus σ`b(α1) = α1 implying the

degree of α1 divides `b. Since ζ` 6= 1, α1 has degree `a. Thus `a divides b` and we may conclude that
α`1 has degree `a−1. Likewise, in Step 3, α2 has degree `a−1.

In Step 4, since a = 1, α`1, α
`
2 ∈ Fq. Further α1/α2 ∈ Fq since σ(α1/α2) = (ζα1)/(ζα2) = α1/α2.

Thus α`1/α
`
2 is an `th power in Fq ensuring that an e ∈ Fq such that e` = α`1/α

`
2 exists. Hence (α1/aα2)

is an `th root of unity and there exists an integer i such that α1 = σi(`
a−1)(eα2). Further α1 has degree

`a. Hence Lemma 2.1, when applied to the relation α1 ∼ eα2, correctly finds the desired output.

The recursive call in Step 5 yields a root α ∈ Fq(α`2) of h1(x). Hence α = σj(α`1) = (σj(α1))
` for

some integer j. Further, σj(α1)/α2 ∈ Fq(α`2) since

σ`
a−1

(σj(α1)/α2) = σj(ζ`α1)/(ζ`α2) = σj(α1)/α2.

Hence α/α`2 = (σj(α1)/α2)
` is an `th power in Fq(α`2) assuring the existence of a γ that is sought in

Step 5. For such a γ, γ` = (σj(α1)/α2)
` implying σj(α1)/(γα2) is an `th root of unity. Hence, there

exists an integer i such that

σj(α1) = γσi`
a−1

(α2) = σi`
a−1

(γα2).

Further α1 has degree `a. Hence Lemma 2.1, when applied to the relation α1 ∼ γcα2, correctly finds
the desired output.

3.1. Implementation and Running Time Analysis. To implement Step 1, pick a random c ∈ Fq
and if c

(q−1)
` 6= 1, set ζ = c

q−1
m . Else try again with a new independent choice c ∈ Fq. We succeed in

finding a ζ if the c chosen is not a `th power. This happens with probability at least 1 − 1/`. The
expected running time of Step 1 is hence O(log2 q). Running times of Steps 2 and 3 are dominated by

the `a+o(1) log2+o(1) q time their respective calls to Lemma 3.1 take.

In Step 4, find a root a of x` − (α`1/α
`
2) ∈ Fq[x] in Fq using [vzGS92, KU08] in `1+o(1) log2+o(1) q

time. The invocations to Lemma 2.1 in Steps 4 and 5 each take `a+o(1) log2+o(1) q time.

In Step 5, minimal polynomials of α1 and α2 can be computed in `a+o(1) log1+o(1) q) time [KU08, § 8.4].
To compute γ, find a root of x` − α/α`2 in Fq(α`2) = Fq[x]/(h2(x)) using [vzGS92, KU08]. Since we a

finding the root of a degree ` polynomial over a field of size q`
a−1

, the running time `a+o(1) log1+o(1) q)
turns out to be nearly linear in `a.

Algorithm 1 makes at most one recursive call to an identical subproblem of size `a−1. Hence at
most a recursive calls are made in total. In summary, we have the following theorem.

Theorem 3.2. Algorithm 1 solves the Isomorphism Problem restricted to the special case when n
is a power of a prime ` dividing q − 1 in n1+o(1) log2+o(1) q time.

8 FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES

4. Root Finding in Artin-Schreier Extensions of Finite Fields

Using Artin-Schrier theory, we solve the Isomorphism Problem restricted to the special case when
n is a power of the characteristic p. The novelty here is a fast recursive evaluation of the idempotent
in the proof of the additive version of (cyclic) Hilbert’s theorem 90.

Lemma 4.1. There is an algorithm that given a finite extension L/Fq of degree [L : Fq] divisible by

p, finds an α ∈ L such that σ[L:Fq]/p(α) = α+ 1 in [L : Fq]1+o(1) log2+o(1) q time.

Proof. Let m := [L : K]/p and K := {β ∈ L|σm(β) = β}. Since the trace of 1 from L down to K is 0,
an α as claimed in the lemma exists by Hilbert’s theorem 90 applied to the cyclic extension L/K. We
next describe an algorithm that finds such an α in the stated time.

Let TrL/K =
∑p−1

i=0 σ
mi denote the trace from L to K. Pick θ ∈ L uniformly at random. If

TrL/K(θ) 6= 0 (which happens with probability at least 1/2), setting

α :=
−1

TrL/K(θ)

p−1∑
i=0

iσmi(θ)

ensures σm(α)− α = 1. We next demonstrate that given θ ∈ L, α can be computed fast.

Let L be given as Fq(η) for some η ∈ Fq with minimal polynomial g(x) ∈ Fq[x]. By repeated squaring,

in time O([L : Fq] log2 q) compute ηq.

For a positive integer b, let Σb denote the partial sum
∑b−1

i=0 iσ
mi(θ) and let Γb denote the partial

trace
∑b−1

i=0 σ
mi(θ). We intend to compute Σp and Γp to set α = Σp/Γp.

For every positive integer b,

2b−1∑
i=0

iσmi(θ) =
b−1∑
i=0

iσmi(θ) +
2b−1∑
i=b

iσmi(θ) =
b−1∑
i=0

iσmi(θ) +
b−1∑
i=0

(b+ i)σm(b+i)(θ)

=

b−1∑
i=0

iσmi(θ) + bσmb

(
b−1∑
i=0

σmi(θ)

)
+ σmb

(
b−1∑
i=0

iσmi(θ)

)
.

(4) ⇒ Σ2b = Σb + bσbm(Σb) + σbm(Γb).

Likewise

(5) Γ2b = Γb + σbmΓb.

Given Σb,Γb and ηq, σmb(Σb) and σmb(Γb) can be computed in [L : Fq]1+o(1) log2+o(1) q) time using the
Frobenius representation of [vzGS92] and fast modular composition [KU08]. Hence, given Σb and Γb,

computing Σ2b and Γ2b using equations 4 and 5 takes [L : Fq]1+o(1) log2+o(1) q time. This running time
is independent of b and m.

Set c = blog2 pc and successively compute Σ0,Γ0,Σ2,Γ2,Σ4,Γ4, . . . ,Σ2c ,Γ2c using equations 4 and

5. Since c ≤ log2 p, this takes Õ([L : Fq] log2 q) time. If p is not a power of 2, we recursively com-
pute Σp−2c and Γp−2c . With the knowledge of Σ2c ,Γ2c ,Σp−2c ,Γp−2c , we may compute Σp and Γp in

Õ([L : Fq] log q) time as

(6) Σp = Σ2c + 2cσm2c(Σp−2c) + σm2c(Γp−2c),Γp = Γc2 + σm2c(Γp−2c).

Since p− 2c ≤ p/2, at most log2 p recursive calls are made in total. �

FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES 9

We next state the algorithm followed by proof of correctness and implementation details.

Algorithm 2 Root Finding Through Artin-Schreier Theory:

Input: Monic irreducibles g1(x), g2(x) ∈ Fq[X] of degree pa where a is a positive integer.

Output: A root of g1(x) in Fq(β2) where β2 ∈ Fq is a root of g2(x).
1: Construct Fq(β1) ∼= Fqpa where β1 is a root of g1(x).
. Apply Lemma 4.1 with L = Fq(β1) and find α1 ∈ Fq(β1) such that

σp
a−1

(α1) = α1 + 1.

. Compute αp1 − α1. (αp1 − α1 will have degree pa−1.)
2: Construct Fq(β2) ∼= Fqpa where β2 is a root of g2(x).
. Apply Lemma 4.1 with L = Fq(β2) and find α2 ∈ Fq(β2) such that

σp
a−1

(α2) = α2 + 1.

. Compute αp2 − α2. (αp2 − α2 will have degree pa−1.)
3: If a = 1,
. Find an e ∈ Fq such that ep − e = (αp1 − α1)− (αp2 − α2).
. Apply Lemma 2.1 to α1 ∼ α2 + e and find a root of g1(x) in Fq(β2).

4: If a 6= 1,
. Find the minimal polynomials h1(x), h2(x) over Fq of αp1 − α1, α

p
2 − α2 respectively.

. Recursively find a root α of h1(x) in Fq(αp2 − α2) = Fq[x]/(h2(x)). (h1(x) and h2(x) have degree
`a−1.)
. Find a γ ∈ Fq(α`2) such that γp − γ = α− (αp2 − α2).
. Apply Lemma 2.1 to α1 ∼ α2 + γ and find a root of g1(x) in Fq(β2).

We next argue that Algorithm 2 runs to completion and is correct.

In Step 1, αp1 − α1 is claimed to have degree pa−1. Let b be the degree of αp1 − α1. Since

σp
a−1

(αp1 − α1) =
(
σp

a−1
(α1)

)p
− σpa−1

(α1) = αp1 + 1− (α1 + 1) = αp1 − α1,

b divides pa−1. Since α1 is a root of xp − x − (αp1 − α1) and α1 has degree pa, αp1 − α1 has degree at
most pa−1. Thus αp1 − α1 has degree pa−1. Likewise, in Step 2, αp2 − α2 has degree pa−1.

In Step 3, since a = 1, αp1 − α1, α
p
2 − α2 ∈ Fq. Further α1 − α2 is in Fq since σ(α1 − α2) =

(α1+1)−(α2+1) = α1−α2. Thus α1−α2 ∈ Fq is a root of xp−x−((αp1−α1)−(αp2−α2)) ensuring that
an e ∈ Fq such that ep− e = (αp1−α1)− (αp2−α2) exists. The roots of xp−x− ((αp1−α1)− (αp2−α2))
are {e, e+ 1, e+ 2, . . . , e+ (p− 1)}. Hence α1 − α2 = e. Further α1 has degree `a. Hence Lemma 2.1,
when applied to the relation α1 ∼ α2 + e, correctly finds the desired output.

The recursive call in Step 4 yields a root α ∈ Fq(αp2 − α2) of h1(x). Hence α = σj(αp1 − α1) =
(σj(α1))

p − σj(α1) for some integer j. Further, σj(α1)− α2 ∈ Fq(αp2 − α2) since

σp
a−1

(σj(α1)− α2) = σj(α1 + 1)− (α2 + 1) = σj(α1)− α2.

Hence σj(α1)−α2 ∈ Fq(αp2−α2) is a root of xp−x = α− (αp2−α2) assuring the existence of γ sought
in Step 5. For such a γ, the roots of xp − x − (α − (αp2 − α2)) are {γ, γ + 1, γ + 2, . . . , γ + (p − 1)}.
Hence σj(α1) − α2 = γ. Further α1 has degree `a. Hence Lemma 2.1, when applied to the relation
α1 ∼ α2 + γ, correctly finds the desired output.

10 FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES

4.1. Implementation and Run Time Analysis. Running times of Steps 1 and 2 are dominated
by their respective calls to Lemma 3.1, each taking pa+o(1) log2+o(1) q time.

In Step 3, find a root e of xp − x − ((αp1 − α1) − (αp2 − α2)) ∈ Fq[x] in Fq using [vzGS92, KU08]

in p1+o(1) log2+o(1) q time. Invocations to Lemma 2.1 in Steps 3 and 4 take pa+o(1) log2+o(1) q time.

In Step 4, minimal polynomials of αp1 − α1 and αp2 − α2 can be computed in pa+o(1) log1+o(1) q time
[KU08, § 8.4]. To compute γ, find a root of xp − x − (α − (αp2 − α2)) in Fq(αp2 − α2) = Fq[x]/(h2(x))

using [vzGS92, KU08]. Since we a finding the root of a degree p polynomial over a field of size qp
a−1

,

the running time pa+o(1) log1+o(1) q turns out to be nearly linear in pa.

Algorithm 2 makes at most one recursive call to an identical subproblem of size pa−1. Hence at
most a recursive calls are made in total. In summary, we have the following theorem.

Theorem 4.2. Algorithm 2 solves the Isomorphism Problem restricted to the special case when
n = pa in n1+o(1) log1+o(1) q time.

5. Root Finding over Extensions of Finite Fields using Elliptic Curves

We solve the Isomorphism Problem restricted to the case when n is a power `a of a prime ` - q(q−1)

in `a+1+o(1) log1+o(1) q + O(` log5 q) time. Through this section, fix a prime ` such that ` - q(q − 1),√
q ≥ 5`3 and a positive integer a.

5.1. Elliptic Curves with Fq-rational `-torsion. Let E be an elliptic curve over Fq such that `

divides |E(Fq)| but `2 does not. Let σE : E −→ E denote the qth power Frobenius endomorphism and
t ∈ Z the trace of σE . The characteristic polynomial PE(X) := X2 − tX + q ∈ Z[X] of σE factors
modulo ` as

X2 − tX + q = (X − 1)(X − q) mod `.

To see why 1 is a root of PE(X) modulo `, observe PE(1) = |E(Fq)| and ` | |E(Fq)|. The other root is
q, since the product of the roots is q. By Hensel’s lemma, there exists λ, µ ∈ {0, 1, . . . , `a+1 − 1} such
that

X2 − tX + q = (X − λ)(X − µ) mod `a+1,

where λ = 1 mod ` and µ = q mod `. Hence there exists Pλ, Pµ ∈ E[`a+1], each of order `a+1 such
that

E[`a+1] = 〈Pλ〉 ⊕ 〈Pµ〉, σE(Pλ) = λPλ and σE(Pµ) = µPµ.

Since λ = 1 mod ` and `2 - |E(Fq)|, λ = 1 + γ` where γ := (λ− 1)/` ∈ Z≥0 and gcd(γ, `) = 1.

5.2. Root Finding Through Discrete Logarithms in Elliptic Curve. In this subsection, we
devise an algorithm for the Isomorphism Problem that involves discrete logarithm computations in
elliptic curves. We begin with a few preparatory lemmata.

Lemma 5.1. Pλ ∈ E(Fq`a) and x(Pλ) has degree `a.

Proof. Let c be the smallest positive integer such that σcEPλ = Pλ. To claim Pλ ∈ E(Fq`a), it suffices
to show c = `a. Further, c = `a would also imply that x(Pλ) has degree `a, for if x(Pλ) were in a
proper subfield of Fq`a then c has to be a proper divisor of `a. Since σE(Pλ) = λPλ and Pλ has order

`a+1, c equals the order of λ mod `a+1 in (Z/`a+1Z)×. For λc = (1 + γ`)c = 1 mod `a+1 to hold, it
is necessary and sufficient that `a divides cγ. Hence c = `a. �

Lemma 5.2. E(Fq`a)[`a+1] = 〈Pλ〉

FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES 11

Proof. From Lemma 5.1, 〈Pλ〉 ⊆ E(Fq`a). Since E[`a+1] = 〈Pλ〉 ⊕ 〈Pµ〉, to claim the lemma it suffices
to prove E(Fq`a) ∩ 〈Pµ〉 = {O}. If E(Fq`a) ∩ 〈Pµ〉 6= {O}, then ∃P ∈ E(Fq`a) ∩ 〈Pµ〉 of order `.

Since P ∈ E(Fq`a), σ`
a

E P = P and since P ∈ 〈Pµ〉, σEP = µP . Hence µ`
a
P = P . Since P has

order `, µ`
a − 1 = 0 mod `. Since ` is a prime, raising to `th powers modulo ` is the identity map

implying µ = 1 mod `. Since gcd(`, q − 1) = 1, this contradicts the fact that µ = q mod `. Thus
E(Fq`a) ∩ 〈Pµ〉 = {O}. �

The group Σ := 〈σE |σ`
a

E = 1〉 acts on E(Fq`a). For P ∈ E(Fq`a), denote by Σ.P the orbit {P, σEP, . . . , σ`
a−1
E P}

of P under Σ.

Lemma 5.3. The set 〈Pλ〉 \ 〈`Pλ〉 is the following disjoint union of orbits

〈Pλ〉 \ 〈`Pλ〉 =

`−1⋃
z=1

Σ.zPλ.

Proof. For every z ∈ {0, 1, . . . , ` − 1}, zPλ ⊆ 〈Pλ〉 \ 〈`Pλ〉 and |Σ.zPλ|= `a. Further, |〈Pλ〉 \ 〈`Pλ〉|=
`a(` − 1). It is thus sufficient to prove for distinct z1, z2 ∈ {1, 2, . . . , ` − 1} that z1Pλ ∩ z2Pλ = ∅. If

z1Pλ = σjEz2Pλ for some z1, z2 ∈ {1, 2, . . . , `− 1} and j ∈ {0, 1, . . . , `a − 1} then,

z1Pλ = λjz2Pλ ⇒ z1 − λjz2 = 0 mod `a ⇒ z1 − (1 + γ`)jz2 = 0 mod `a ⇒ z1 = z2 mod `.

�

Let TrE : E(Fq`a) −→ E(Fq`a) denote the trace like map that sends P to
∑`a−1

j=0 σjEP . The next lemma

states that distinct Σ orbits of 〈Pλ〉 \ 〈`Pλ〉 have distinct images under TrE .

Lemma 5.4. For all P1, P2 ∈ 〈Pλ〉 \ 〈`Pλ〉, TrE(P1) = TrE(P2) if and only if Σ.P1 = Σ.P2.

Proof. If P1, P2 ∈ 〈Pλ〉 \ 〈`Pλ〉 and Σ.P1 = Σ.P2, then ∃j ∈ {0, 1, . . . , `a − 1} such that P2 = σjEP1.

Hence, Tr(P2) = TrE(σjEP1) = σjETrE(P1) = TrE(P1). We next prove the converse, that is, the “only

if” part of the lemma. For every α ∈ Fq at most q`
a − 1 elements in F`aq have trace (down to Fq) α. If

TrE(Pλ) = O, then

[E(Fq) : TrE(E(Fq`a))] ≥ `⇒ |E(Fq`a)|≤
(

1 +
2
√
q

)
q`

a

`
.

This contradicts the Hasse-Weil bound |E(Fq`a)|≥ q`a − 2
√
q`a . Thus TrE(Pλ) 6= O.

Let P1, P2 ∈ 〈Pλ〉\ 〈`Pλ〉 and TrE(P1) = TrE(P2). By Lemma 5.3, there exists z1, z2 ∈ {1, 2, . . . , `−1}
such that P1 ∈ Σ.z1Pλ and P2 ∈ Σ.z2Pλ. Hence TrE(P1) = TrE(z1Pλ) = z1TrE(Pλ). Likewise,
TrE(P2) = z2TrE(Pλ). Since TrE(P1) = TrE(P2), (z1 − z2)TrE(Pλ) = O. Since TrE(Pλ) ∈ E(Fq)[`],
|E(Fq)[`]|= ` and Tr(Pλ) 6= O, the order of TrE(Pλ) is `. Hence z1 − z2 = 0 mod ` thereby implying
Σ.P1 = Σ.P2. �

12 FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES

Algorithm 3 Root Finding Through Elliptic Curve Discrete Logarithms

Input: Monic irreducibles g1(x), g2(x) ∈ Fq[X] of degree `a where ` ≤ √q is a prime not dividing
q(q − 1).

Output: A root of g1(x) in Fq(α2) where α2 ∈ Fq is a root of g2(x).
1: Find an elliptic curve E/Fq with `||E(Fq)| and `2 - |E(Fq)|.
2:

. Construct Fq`a as Fq(α1) where α1 is a root of g1(x).

. Find a point P1 ∈ E(Fq`a) of order `a+1.

. x(P1) is obtained as f1(α1) for some f1(x) ∈ Fq[x] of degree less than `a.

. Compute TrE(P1).
3:

. Construct Fq`a as Fq(α2) where α2 is a root of g2(x).

. Find a point P2 ∈ E(Fq`a) of order `a+1.

. Compute TrE(P2).
4: Find the z ∈ {1, . . . , `−1} such that TrE(P1) = zTrE(P2) by solving a discrete logarithm problem

in the order ` cyclic group E(Fq)[`].
5: Compute zP2 and obtain x(zP2) = f2(α2) for some f2(x) ∈ Fq[x] of degree less than `a.
6: Apply Lemma 2.1 to the relation f1(α1) ∼ f2(α2) and output a root of g1(x) in Fq(α2).

We first argue that algorithm 3 is correct. An elliptic curve E/Fq as required in Step 1 exists as
`2 ≤ √q implies ` has a multiple not divisible by `2 in the Hasse interval. As P1 and P2 are both in

E(Fq`a) and of order `a+1, by Lemma 5.2, P1, P2 ∈ 〈Pλ〉 \ `〈Pλ〉. Hence by Lemma 5.3, there exists
z ∈ {1, 2, . . . , `− 1} such that

(7) P1 = Σ.zP2.

By Lemma 5.4, equation 7 holds if and only if

(8) TrE(P1) = zTrE(P2).

Hence z as desired in Step 4 exists and further for such a z, there exists an integer j such that

P1 = σjE(zP2) implying f1(α1) ∼ f2(α2).

The bottleneck in the algorithm happens to be computing a point of order `a+1 in Steps 2 and 3.
An algorithm for this task is presented in the subsequent subsection. For now, we discuss the imple-
mentation of the other steps. In Step 1, we generate elliptic curves E/Fq by choosing a Weierstrass
model over Fq uniformly at random. Then we compute |E(Fq)| using Schoof’s point counting algorithm

in Õ(log5 q) time and check if `||E(Fq)| and `2 - |E(Fq)|. Since 5`3 ≤ √q, the probability that `||E(Fq)|
and `2 - |E(Fq)| is close to 1/(`−1) [How, Thm 1.1]. Hence Step 1 can be completed in time O(` log5 q).
The iterated Frobenius algorithm of von zur Gathen and Shoup [vzGS92] implemented using fast mod-
ular composition [KU08] computes traces in finite field extensions in nearly linear time. With minor
modifications (performing elliptic curve addition in place of finite field addition), it computes TrE(P1)

and TrE(P2) in Steps 2 and 3 in `a+o(1) log1+o(1) q time. The discrete logarithm computation in Step

4 can be performed with O(
√
`) E(Fq)-additions by the baby step giant step algorithm. Since z < `,

Step 5 only takes O(log(`)) E(Fq`a) additions. From Lemma 2.1, Step 6 runs in `a+o(1) log1+o(1) q time.

5.3. Lang’s theorem and Finding ` Power Torsion with ` Isogenies. In § 3 and § 4, we exploited
certain idempotents in proofs of Hilbert’s theorem 90 to solve the Isomorphism Problem restricted
to the case where n is a power of a prime ` dividing p(q−1) in linear time. The bottleneck in Algorithm
3 for the case ` - p(q − 1) is

FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES 13

Problem 5.5. Given a monic irreducible g(x) ∈ Fq[x] of prime power `a degree (where ` - p(q − 1)),
an elliptic curve E/Fq (where ` divides |E(Fq)| but `2 does not) and |E(Fq)|, find a generator of
E(Fq`a)[`a+1] where Fq`a is constructed as Fq(α) for some root α of g(x).

We next solve Problem 5.5 using elliptic curve isogenies.

Algorithm 4 Finding ` Power Torsion:

Input:
. Monic irreducible g(x) ∈ Fq[X] of degree `a where ` ≤ √q is a prime not dividing q(q − 1).

. An elliptic curve E/Fq such that `||E(Fq)| and `2 - |E(Fq)|.

. |E(Fq)|.
Output: A point P ∈ E of order `a+1 with coordinates in Fq[x]/(g(x)).

1: Construct Fq`a as Fq(α) for a root α of g(x).

2: Let ι : E −→ Ẽ be the isogeny with kernel ker(ι) = E(Fq)[`].
. Compute a Weierstrass equation for Ẽ/Fq.
. Compute φι(x), ψι(x) ∈ Fq[x] such that x(ι(R)) = ψι(x(R))/φι(x(R)), ∀R ∈ E.

3: If a = 1
. Find a point T̃ ∈ Ẽ(Fq) of order `.

. Find a root γ ∈ Fq(α) of φι(x)− x(T̃)ψι(x) ∈ Fq[x].

. Output a point in E with x-coordinate γ.
4: If a 6= 1
. Find α̃ ∈ Fq(α) of degree `a−1 and its minimal polynomial M(x) ∈ Fq[x] by Lemma 2.2.

. Recursively find a point P̃ ∈ Ẽ(F
q`a−1) of order `a by calling this very algorithm with input

(M(x), Ẽ/Fq, |E(Fq)|).
. Find a root η ∈ Fq(α) of φι(x)− x(P̃)ψι(x) ∈ Fq(α̃)[x].
. Output a point in E with x-coordinate γ.

In Step 2, the Weierstrass equation for Ẽ and the polynomials ψι(x) and φι(x) can all be computed

in `a+o(1) log2+o(1) q time [CL13]. In Step 3, a point T̃ ∈ Ẽ(Fq) of order ` can be found in Õ(` log q)

time as follows: generate R̃ ∈ Ẽ(Fq) at random and output T̃ = |Ẽ(Fq)|/` if its not the identity.

Note we know don’t have to compute |Ẽ(Fq)| since |Ẽ(Fq)|= |E(Fq)|. The root finding in Step 3 takes

`2+o(1) log2+o(1) q time using [KS99, KU08]. By [CL13], a root γ of φι(x) − x(T̃)ψι(x) ∈ Fq[x] has
degree ` and the two points in E with x-coordinate γ both have order `2 and are in E(Fq`). Thus the

output at the end of Step 3 is correct. Likewise, in Step 4, by [CL13], a root η of φι(x) − x(P̃)ψι(x)
has degree `a and the two points in E with x-coordinate η both have order `a+1 and are in E(Fq`a).

Hence the output at the end of Step 4 is correct. The root finding in Step 4 takes `a+1+o(1) log1+o(1) q
time using [KS99, KU08] and is the bottleneck. The number of recursive calls is at most a which being
logarithmic in `a can be ignored in the run time analysis.

Using Algorithm 4 as a subroutine, Algorithm 3 solves the Isomorphism Problem restricted to
the special case when n = `a for some prime ` such that ` - q(q − 1) and 5`3 ≤ √q. The restriction

5`3 ≤ √q may be removed without loss of generality. For if 5`3 >
√
q in the Isomorphism Problem,

we may pose the problem over a small degree extension Fqd instead of Fq where d is the smallest

positive integer such that ` ≤
√
qd and ` - d (c.f.[Rai08]). In summary, we have proven

Theorem 5.6. Algorithm 3 solves the Isomorphism Problem restricted to the special case when
n = `a for some prime ` - q(q − 1) in `a+1+o(1) log1+o(1) q +O(` log5 q) time.

14 FAST COMPUTATION OF ISOMORPHISMS BETWEEN FINITE FIELDS USING ELLIPTIC CURVES

The running time is subquadratic in the input degree `a if a > 1. If a = 1, that is, if the input degree
is a prime `, the running time is quadratic. The question if a sub quadratic algorithm for the later
case exists remains open. We look to Lang’s theorem, an elliptic curve analogue of Hilbert’s theorem
90 in hopes of solving the bottleneck Problem 5.5 in subquadratic time. Lang’s theorem states that
the first cohomology group H1(Fq, E) of an elliptic curve E over Fq is trivial. That is, the Lang map
ψ : E −→ E taking P to σE(P) − P is surjective. Problem 5.5 is rephrased in terms of computing
preimages under the Lang map as the following Problem 5.7. Problems 5.5 and 5.7 are equivalent since
the preimage of E(Fq)[`] \ {O} under ψ is E(Fq`a)[`a+1].

Problem 5.7. Given a monic irreducible g(x) ∈ Fq[x] of prime power `a degree (where ` - p(q − 1)),
an elliptic curve E/Fq (where ` divides |E(Fq)| but `2 does not) and |E(Fq)|, find a preimage under
the Lang map ψ of E(Fq)[`] \ {O} in E(Fq`a) where Fq`a is constructed as Fq(α) for some root α of
g(x).

Open Problem: Solve Problem 5.5 or Problem 5.7 in time sub quadratic in `a.

References

[All02] B. Allombert, Explicit Computation of Isomorphisms between Finite Fields, Finite Fields and Their Applications
8, 332342 (2002)

[BGJT14] R. Barbulescu, P. Gaudry, A. Joux and E. Thome, A Heuristic Quasi-Polynomial Algorithm for Discrete
Logarithm in Finite Fields of Small Characteristic, Advances in Cryptology EUROCRYPT 2014, P 1-16.

[Ben81] M. Ben-Or, Probabilistic algorithms in Finite Fields,FOCS (1981), pp. 394-398.
[Ber67] E. R. Berlekamp, Factoring Polynomials Over Finite Fields, Bell System Tech. J., 46:1853-1849. 1967.
[BDDFS17] L. Brieulle, L. De Feo, J. Doliskani, J-P. Flori and E. Schost, Computing isomorphisms and embeddings of

finite fields, https://arxiv.org/abs/1705.01221. To appear in Mathematics of Computation, https://doi.org/
10.1090/mcom/3363

[CZ81] D. G. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over finite fields, Math. Comp., vol.
36, 587-592, 1981.

[CL13] J-M Couveignes and R Lercier, Fast construction of irreducible polynomials over finite fields, Israel Journal of
Mathematics, The Hebrew University Magnes Press, 2013, 194(1), pp.77-105.

[vzGS92] J. von zur Gathen and V. Shoup, Computing Frobenius maps and factoring polynomials, Comput. Complexity,
vol. 2, 187-224, 1992.

[Gra08] A. Granville, Smooth numbers: computational number theory and beyond, Algorithmic Number Theory, MSRI
Publications Volume 44, 2008.

[How] E. Howe, On the group orders of elliptic curves over finite fields, Compositio Mathematica (1993): 229-247.
[KS99] E. Kaltofen and V. Shoup, Fast polynomial factorization over high algebraic extensions of finite fields. In Proc.

1997 Internat. Symp. Symbolic Algebraic Comput. (ISSAC’97) , pages 184-188.
[KU08] K. Kedlaya and C. Umans, Fast modular composition in any characteristic, FOCS : 2008, pages 146-155.
[Lan78] S. Lang, Algebraic groups over finite fields, American Journal of Mathematics 78 : 555-563.
[Len87] H. W. Lenstra Jr, Factoring integers with elliptic curves, Annals of Mathematics 126 (3): 649-673. (1987).
[Moo1889] E. H. Moore, A doubly-infinite system of simple groups, Bull. New York Math. Soc. 3 (1893), 73-78; Math.

Papers read at the Congress of Mathematics (Chicago, 1893), Chicago, 1896, pp. 208-242.
[Nar2016] A. K. Narayanan, Fast computation of isomorphisms between finite fields using elliptic curves, https://arxiv.

org/abs/1604.03072

[Pin92] R. G. E. Pinch, Recognizing elements of finite fields,Cryptography and Coding II, pages 193-197, 1992.
[Rai08] E. Rains, Efficient computation of isomorphisms between finite fields.
[Sch95] R. Schoof, Counting Points on Elliptic Curves over Finite Fields, J. Theor. Nombres Bordeaux 7 :219-254, 1995.
[Sho99] V. Shoup, Efficient computation of minimal polynomials in algebraic extensions of finite fields, ISSAC ’99, Pages

53-58.
[Sho95] V. Shoup, Fast construction of irreducible polynomials over finite fields”, Journal of Symbolic Computation, 1994.
[Zie74] N. Zierler, A conversion algorithm for logarithms on GF (2n), Journal of Pure and Applied Algebra, 4:353-356,

1974.

https://arxiv.org/abs/1705.01221
https://doi.org/10.1090/mcom/3363
https://doi.org/10.1090/mcom/3363
https://arxiv.org/abs/1604.03072
https://arxiv.org/abs/1604.03072

	1. Introduction
	1.1. Computing Isomorphisms between Finite Fields
	1.2. Computing Isomorphisms and Root Finding
	1.3. Summary of Results

	2. Reduction of the Isomorphism Problem to Prime Power Degrees
	3. Root Finding in Kummer Extensions of Finite Fields
	3.1. Implementation and Running Time Analysis

	4. Root Finding in Artin-Schreier Extensions of Finite Fields
	4.1. Implementation and Run Time Analysis

	5. Root Finding over Extensions of Finite Fields using Elliptic Curves
	5.1. Elliptic Curves with F_q-rational -torsion
	5.2. Root Finding Through Discrete Logarithms in Elliptic Curve
	5.3. Lang's theorem and Finding Power Torsion with Isogenies

	References

