
Rapid hardware design
for cryptographic modules

with filtering structures over small finite fields?

Nusa Zidaric[0000−0001−9308−7392], Mark Aagaard[0000−0002−7331−3177], and
Guang Gong[0000−0003−2684−9259]

University of Waterloo, Waterloo, ON, Canada N2L 3G1
{nzidaric,maagaard,ggong}@uwaterloo.ca

Abstract. This paper presents a design automation toolkit for hardware
implementations of linear and non-linear feedback shift registers (FSRs).
The toolkit is implemented in the GAP computer algebra system and
generates both executable GAP code and VHDL for synthesizable hard-
ware. To design an FSR, the user needs only to provide a template and
instantiate a few parameters. The primary objects are LFSRs; NLFSRs;
and arbitrary combinational functions, which are modelled as FILFUNs,
for “filtering functions”. Conventional feedback functions are modelled
as univariate polynomials. More complex functions can be modelled as
FILFUNs. The paper demonstrates the capabilities of the toolkit using
the WG-7 and WG-8 keystream generators and the Grain v1 stream ci-
pher. Less than 30 lines of GAP code are required to generate a complete
datapath in VHDL.

Keywords: Feedback shift registers · filtering generators · rapid hard-
ware design · stream ciphers.

1 Introduction

Feedback shift registers (FSR) play an important role in stream cipher design.
A milestone in stream cipher design is the eSTREAM project [1], launched in
2004. All 3 hardware portfolio ciphers, Grain, MICKEY and Trivium, as well as
the software portfolio cipher Sosemanuk, use FSRs. The stream cipher ACORN
[2], a remaining round 3 CAESAR candidate [3], is based on 6 LFSRs. Last but
not least, the two stream ciphers used for encryption and integrity of commu-
nications in mobile networks, Snow3G and ZUC[4,5], both use LFSRs. Another
application area for LFSRs are the cyclic redundancy codes (CRC) used in many
communication and data storage devices for error-detection. Less noticeable is
the use of LFSRs in algorithms for finite field arithmetic: e.g. a serial circuit im-
plementing multiplication by x followed by reduction modulo the field defining
polynomial f(x) can be implemented as a LFSR with the feedback f(x).

? The authors would like to thank Dr. Alexander Konovalov from University of St.
Andrews for his advice during FSR package implementation



2 N. Zidaric et al.

This work presents a toolkit for rapid hardware design for modules with a
filtering structure composed of feedback shift registers and filtering functions.
The toolkit consists of two packages written in GAP [6]. The first package is
called FSR, and allows creation, initialization and running of both LFSRs and
NLFSRs. In addition, it implements filtering functions FILFUNs (multivariate
polynomials). The generality of the FSR package enables the FSRs to be used
directly as building blocks for many cryptographic modules. The second package
is called FSRtoVHDL, and as its name suggests, it creates hardware modules
using the VHDL language. By design of the two packages, each FSR object
corresponds to a hardware entity, and the FSR objects themselves contain all
the information needed for both their execution in GAP and their generation
in hardware. Hardware is generated from a template, and for a simple cipher,
such as WG-7, the entire datapath VHDL was created from just 30 lines of GAP
code. The FSR package can be used to implement arbitrary primitives in GAP,
which can operate e.g. as random number generators.

Two critical points in the design of this toolkit were modular thinking, in-
herent to hardware designs; and recognition and exploitation of structural simi-
larities between LFSRs, NLFSRs and filters, from both mathematical and hard-
ware perspective. A modular approach to design and implementation can open
new perspectives and improve the initial design. Cryptographic primitives are
always carefully selected to meet certain security requirements and an appro-
priate trade-off between security and hardware efficiency is desirable. It is thus
imperative to be able to estimate the hardware cost of the design early on, and
having the ability to quickly generate and synthesize hardware modules is very
beneficial. Theoretical estimates of hardware cost, such as Hamming weights, of-
ten do not reflect the actual area and delay in hardware. Modern synthesis tools
are powerful and quite successful at optimizing combinational logic, especially
for small designs. Furthermore, they are aware of hardware resources available
for the chosen target technology and can be instructed to optimize for a specific
performance goal, e.g. high speed or small area. These optimizations can cause
discrepancies between theoretical estimates and actual hardware, and the results
can be quite surprising.

The toolkit is able to define (N)LFSRs and filters described by multivari-
ate polynomials. It can execute these (N)LFSRs in GAP, generate traces, and
generate VHDL code. Furthermore, it can define, execute, and generate VHDL
datapaths for many hierarchical modules constructed from a set of (N)LFSRs
and FILFUN filters.

2 Background and Related Work

2.1 Basic Terminology

To keep this section short, many details are omitted and the reader can refer to
a number of sources such as [12,13,11].



Rapid hardware design for cryptographic modules with filtering structure 3

Multivariate Polynomials Let F ≡ Fq where q is a prime or a prime power.
A multivariate function in t variables x0, x1, . . . , xt−1 is defined as follows:

f : F t → F
f(x0, x1, . . . , xt−1) =

∑
∀(i0,i1,...,it−1)∈Zt

q

ci0,i1,...,it−1
xi0
0 xi1

1 . . . x
it−1

t−1 (1)

with coefficients ci0,i1,...,it−1 ∈ F ≡ Fq and where ij ∈ Zq for 0 ≤ j < t. The

sum in expression (1) runs over all possible monomials xi0
0 xi1

1 . . . x
it−1

t−1 , where
∀x ∈ F : xq = x. The expression on the r.h.s of equation (1) describes an
univariate polynomial when t = 1, and a multivariate polynomial when t > 1.
The degree of a monomial is defined as the sum of all its exponents (2) and the
degree of the polynomial as the maximum degree of all its monomials (3). For
readability, notation mi0,i1,...,it−1

is introduced for monomials:

mi0,i1,...,it−1 = m(x0, x1, . . . , xt−1) = xi0
0 xi1

1 . . . x
it−1

t−1

deg(m(x0, x1, . . . , xt−1)) =

t−1∑
j=0

ij (2)

deg(f(x0, x1, . . . , xt−1)) = max
∀(i0,i1,...,it−1)∈Zt

q

{
deg(mi0,i1,...,it−1)

}
(3)

Based on the degree of the polynomial function, given by the expression (3),
a multivariate polynomial is classified as constant for deg(f) = 0, linear for
deg(f) = 1, and nonlinear function for deg(f) > 1.

Also when q = 2, f(x0, x1, . . . , xt−1) is a boolean function in t variables, i.e.,

f(x0, x1, . . . , xt−1) =
∑

∀(i0,i1,...,it−1)∈Zt
2

ci0,i1,...,it−1
xi0
0 xi1

1 . . . x
it−1

t−1 (4)

Feedback Shift Registers (FSR) An n-stage shift register over a finite field
F is an array of n registers (stages), denoted Si, i = n−1, . . . , 0. Each stage holds
a value from the underlying finite field F . The parameter n is also referred to
as the length of the FSR. This memory array is shifted with each step Si → Si−1
for i = n − 1, . . . , 1, and the vacant register Sn−1 is updated with a new value
obtained from the feedback function f(x0, · · · , xn−1), a multivariate polynomial
function in n variables, hence the name feedback shift register (FSR). One of the
stages is used to generate the output and each time the FSR is clocked, that
stage produces a new element si ∈F . In this way, the FSR produces a sequence
of elements:

s = {sk} = s0, s1, s2, . . . (5)

where sk’s satisfy the following recursive relation

sk+n = f(sk, sk+1, · · · , sk+n−1), k = 0, 1, · · · ,



4 N. Zidaric et al.

Sn-1 0

feedback function

1S S
0 1s ,s ,...

(a) n-stage FSR

Sn-1 0

feedback function

1S S

0 1s ,s ,...filter

(b) n-stage FSR with a filter

Fig. 1: Top level schematic of an n-stage FSR

A simple schematic of an n-stage FSR is shown in Figure 1(a), with the
output sequence produced by stage S0.

The feedback f of the FSR is a polynomial function in t = n variables
x0, x1, . . . , xn−1 as defined in expression (1), whereby the variable xi corresponds
to the stage Si, i ∈ Zn, the residue ring modulo n where n is a positive inte-
ger. Integer n is the length of the FSR. A linear feedback yields a linear and a
nonlinear feedback a nonlinear feedback shift register, which is an LFSR and an
NLFSR, respectively.

In case of the LFSR, the feedback is given by f(x0, · · · , xn−1) =
∑n−1

i=0 cixi

which can be represented with an univariate polynomial

h(y) = yn +

n−1∑
j=0

cjy
j (6)

where yj corresponds to the stage Sj for j ∈ Zn, and yn to the new value
computed by the feedback. Coefficients cj , j ∈ Zn of the polynomial in (6)
belong to the underlying field F .

At any given moment, the stages of the FSR hold n values from the underlying
finite field, and can be written as a vector of length n: (s0, s1, . . . , sn−1) ∈ Fn.
This vector is called the state of the FSR and the state right after loading the
initial state. The output sequence s is completely determined by the feedback f
and the initial state.

Filtering Generators A typical structure of a filtering generator is shown
in Figure 1(b): it consists of a filter, i.e. a nonlinear multivariate polynomial
function, applied to an LFSR with n stages. Let (sk, sk+1, . . . , sk+n−1) ∈ Fn

be the kth state of the LFSR, g(x0, · · · , xt−1), a multivariate polynomial in t
variables, where t ≤ n, and (d0, · · · , dt−1), a selection of t tap positions in the
state, i.e., 0 ≤ d0 < d1 < · · · < dt−1 < n. The output sequence a = {ak} is given
by

ak = g(sk+d0 , · · · , sk+dt−1), k = 0, 1, · · · .

This is referred to as a filtering generator where g is a called a filtering function,
or simply filter, and a = {ak}, a filtering sequence.



Rapid hardware design for cryptographic modules with filtering structure 5

Example 1. For q = 2, n = 5, t = 3, let {sk} be a binary sequence gener-
ated by the LFSR with the feedback y5 + y3 + 1, a selection of tap positions
(d0, d1, d2) = (0, 2, 3), and filtering function g(x0, x1, x2) = x0 + x1x2. Then the
output sequence, i.e., a filtering sequence, is given by

ak = sk + sk+2sk+3, k = 0, 1, · · ·

2.2 GAP, Synthesis and Related Work

GAP (Groups, Algorithms, Programming) is a specialized computer algebra sys-
tem, originally intended for group theory, but evolved to include vector spaces,
algebras, matrices, polynomials, etc [6]. The proposed toolkit consists of two
packages written in the GAP language: the package FSR, which can be used as
stand-alone package, and the FSRtoVHDL package, which requires the package
FSR. GAP is included in SageMath[8], which allows both FSR and FSRtoVHDL
to be loaded and used in SageMath as well. There is a SageMath package Cryptog-
raphy [9], implementing LFSRCryptosystem over the finite field F2, but it does
not support extension fields. A simple Mathematica package, called Symbolic
Linear Feedback Shift Registers [10] can generate bit sequences from LFSRs.
The FSR package presented in this work is capable of working with LFSRs,
NLFSRs and filtering functions, defined over both prime and extension fields.
To the best of authors knowledge, this toolkit is the unique in its ability to gen-
erate VHDL from a mathematical description containing finite field arithmetic.
For integer, fixed point, and floating point arithmetic, MathWorks[7] offers an
extensive range of embedded software and hardware support, from ARM micro-
processors, Altera and Xilinx FPGAs to PARROT Minidrones. Similarly, tools
like MATLAB Coder, Simulink Coder, Embedded Coder generate C and C++
code and HDL Coder can generate synthesizable Verilog and VHDL code. The
FSRtoVHDL package is situated on top of Register-Transfer-Level, but lower
than High-Level Synthesis, which transform a behavioural description into RTL
designs [14]. The presented toolkit generates synthesizable VHDL modules suit-
able for implementation on FPGAs or ASICs. The ASIC implementation results
for the examples shown in this paper were obtained for a 65nm CMOS ASIC
technology using Synopsis Design Compile for synthesis. The FPGA results are
obtained for Xilinx Spartan 3 devices using Xilinx-ISE. All results were obtained
post place-and-route.

3 Toolkit for Generating Hardware Modules

This section begins with an overview of the toolkit and hardware-design workflow
(Section 3.1), then describes the FSR package (Section 3.2), how to build top-
level modules (Section 3.3), and finally the FSRtoVHDL module (Section 3.4).

3.1 Overview and Workflow

The toolkit consists of two GAP packages: FSR and FSRtoVHDL. The FSR
package is used to create various FSRs and filters, which are then translated to



6 N. Zidaric et al.

VHDL modules using the FSRtoVHDL package, i.e. the FSRtoVHDL package
takes care of the design entry. The produced VHDL code is used as input to
synthesis tools to evaluate the design for different metrics. This design flow is
captured in Figure 2(a). The dashed horizontal line marks the end of design entry.

FSR

FSRtoVHDL

TEMPLATE

synthesis
tools

(a) The design-flow abstraction

FSR

LFSR NLFSR

modules

packages testbenches

FSR FSM

basic
building
blocks

top
level

modules
MANAGER

TEMPLATE

FILFUN

FSRtoVHDL

(b) The FSR and FSRtoVHDL packages

Fig. 2: Toolkit overview

The toolkit significantly reduces the amount of human effort for both soft-
ware implementation of a cipher using GAP and the design entry in VHDL. The
design of the toolkit was guided by the following principles:

1. The toolkit lies in the intersection of finite field arithmetic and hardware
design (with VHDL as the preferred choice for design entry).

2. Hardware-style thinking involves a modular approach: a cipher can be im-
plemented as a collection of basic modules, which were identified as LFSRs,
NLFSRs and FILFUN filters.
(a) For most (N)LFSRs used in practice, the feedback function can be mod-

elled by a multivariate polynomial (Example 3, Case studies 1 and 2).
(b) Arbitrarily complicated NLFSRs can be implemented by connecting an

(N)LFSR and FILFUN(s) (Example 4).
(c) A complex FILFUN filter can be implemented by connecting multiple

simple FILFUNs (Case studies 1 and 2).

3. Recognizing and exploiting structural similarities between LFSRs, NLFSRs
and FILFUNs, from both mathematical and hardware perspective, reduces
the number of implemented objects, functions and methods.

4. A cipher as a collection of basic modules must be represented in a well
structured manner with sufficient information for generation of the top-level
VHDL module (Case studies 1 and 2).

5. Highly structural FSR package design is mandatory for VHDL generation.
6. For small designs (finite fields up to F216), optimizations can be handled

by hardware synthesis tools without resorting to specialized rewriting or
algebraic techniques.



Rapid hardware design for cryptographic modules with filtering structure 7

The structural similarities from mathematical point of view (item 3) are ex-
plained in Table 1 in section 3.2. Items 4 and 5 are related to the transition
from GAP objects to VHDL code, which was one of the biggest challenges in
developing the toolkit. The problem in item 4 was tackled with a template used
to connect the FSR modules in hardware and additional GAP objects, imple-
mented as a part of the FSRtoVHDL package, e.g. an inout field in the template
to capture top-level input and output ports. The template is the only input that
the user must provide: it must specify indeterminates, all parameters needed by
FSR constructors and the actual FSR objects must be included. Item 5 is par-
tially addressed by the good design of FSR objects: all the information for VHDL
implementation of a particular FSR is included in the GAP object in form of
GAP attributes, e.g. the underlying finite field defines which VHDL data type
to use for the signals.

Detailed structure of the toolkit is shown in Figure 2(b). The objects LFSR,
NLFSR and FILFUN are implemented in the FSR package. The FSRtoVHDL
package contains VHDL generation functions, which generate hardware mod-
ules complying with typical hardware coding conventions. The template is used
to provide information to the toolkit’s function named manager. Manager gen-
erates a simple spreadsheet which is used by the designer to specify connections
between source and target ports within the module. Based on this information,
the manager invokes a sequence of appropriate VHDL generation functions. As
mentioned in item 6, the toolkit supports designs over small finite fields, because
GAP uses the Zech’s logarithm representation of elements for finite fields up to
F216 and switches to polynomial representation for larger fields.

3.2 The GAP Package FSR: Feedback Shift Registers

The GAP package FSR implements feedback shift registers (Section 2.1). It al-
lows creation, initialization and running of both LFSRs and NLFSRs, and can
compute some of their properties, e.g. the internal state size of any FSR or the
period of an LFSR. The FSR package also implements filtering functions, named
FILFUNs. A FILFUN is an object of type FSR without feedback, shifting, or
storing, whose functionality is defined by a multivariate polynomial. The justi-
fication for such a design decision is twofold: (i.) filtering functions are similar
to NLFSR feedback functions and (ii.) FSRs with output filter are common, in-
dicating that they will be used together. The structural similarities between the
three FSR objects (item 3 in section 3.1) are captured in Table 1. The differences
between the FSRs and FILFUNs will be discussed shortly.

The basic components of all three objects are state, holding the current state
(Sn−1,. . . , S0) ∈F n, and basis used for representation of the field elements.
Constructors for the FSR objects are listed in Table 2, and their main function-
ality in Table 3. Table 3 differentiates between a regular and an external step
and run. A stand-alone simple (N)LFSR object is self-contained: it is updated
by the computed feedback value (regular step and run). Examples 2 and 3 show
the regular run. The external StepFSR allows arbitrary filters to be added to the



8 N. Zidaric et al.

Table 1: Structural similarities between LFSR, NLFSR and FILFUN objects

FSR multivariate FSR output

object polynomial f(x) (feedback, one or more computed

name linear nonlinear memory) state elm. value of f(x)

LFSR X X X

NLFSR X X X

FILFUN X X X X

Table 2: Constructors for FSR objects

FSR constructor FSRtoVHDL

name mandatory optional comments

LFSR Fq, h(y) from eq. (6) basis, (d0, . . . dt−1) q = 2 or q = 2m

NLFSR Fq, f(x0, . . . , xn−1) from eq. (1), n basis, (d0, . . . dt−1)
q = 2 or q = 2m

FILFUN Fq, f(x0, . . . , xt−1) from eq. (1) basis

h(y) : Fq → Fq (d0, . . . dt−1) - output taps

f(x0, . . . , xj−1) : Fj
q → Fq, where j = t, n n - length (number of stages)

Table 3: Main menthods for FSR objects

All FSR types: LFSR, NLFSR, FILFUN

method name options comments

LoadFSR NA load the initial state

StepFSR
regular step FSR self-contained: compute value x

external step adds an external elem. to the computed value: x + ext

compute the feedback/function value x, use x or x + ext to:

◦ update Sn−1 after shifting stages Sn−1,. . . , S1 for (N)LFSR

◦ output as the new element in case of FILFUN

LoadStepFSR
regular step FSR self-contained: compute value x

external step adds an external elem. to the computed value: x + ext

combines methods LoadFSR, StepFSR to load the new values

for variables before evaluating the function

this method is used by RunFSR for FILFUN objects

RunFSR
regular run with regular step

external run with external step

optional LoadFSR followed by sequence of StepFSR calls

feedback of any (N)LFSR or it can be used e.g. to mask the output of the filter-
ing function. The external step and run are allow the FSRs to be used directly
as building blocks of many ciphers.

While the LFSR and NLFSR differ only in feedback, the filters are a bit
of an exception, which is indicated by the dashed line in Figure 2(b). A filter
alone does not require any feedback, shifting or stages, i.e. hardware registers:



Rapid hardware design for cryptographic modules with filtering structure 9

the component state is used to hold the current values needed to evaluate the
filtering function. The field state is not updated, but rather loaded anew with
each step: method RunFSR takes a list of “initial” states as input as shown in
Example 3, then calls LoadStepFSR for each list entry.

The FSR package also includes output formatting functions for testbench
generation and drawing functions that can automatically generate tikz code.
More detail can be found at https://github.com/nzidaric/fsr and its manual.

Example 2. The following example shows a regular run of an LFSR over F22 ,
using the function call RunFSR with initial state ist and number of steps per-
formed given as an argument. Stage S0 is used to output the sequence elements.

Example 2
gap> K := GF(2);; x := X(K,"x");; f := x^2+x+Z(2)^0;;

gap> F := FieldExtension(K, f);; y := X(F, "y");;

gap> l := y^3+y^2+y+Z(2^2);;

gap> lfsr := LFSR(F, l);

< empty LFSR over GF(2^2) given by FeedbackPoly = y^3+y^2+y+Z(2^2) >

gap> ist := [Z(2^2), Z(2)^0, 0*Z(2)];;

gap> RunFSR(lfsr, ist, 5);

[ 0*Z(2), Z(2)^0, Z(2^2), Z(2^2)^2, Z(2^2)^2, Z(2^2)^2 ]

Example 3. The following example shows a regular run of an FILFUN over F2,
using the function call RunFSR but now with a sequence of inputs inputsequence.

Example 3
gap> f := x_0*x_1+x_2;; fil := FILFUN(K,f);

< FILFUN of length 3 over GF(2),

with the MultivarPoly = x_0*x_1+x_2>

gap> inputsequence := [[Z(2)^0, Z(2)^0, 0*Z(2)],[Z(2)^0, Z(2)^0,

Z(2)^0],[0*Z(2), Z(2)^0, 0*Z(2)]];;

gap> RunFSR(fil, inputsequence);

[ Z(2)^0, 0*Z(2), 0*Z(2) ]

3.3 The Top-Level Modules in GAP and VHDL

The toolkit supports numerous configurations of top-level modules, ranging from
simple sequence generators using a single (N)LFSR to complex designs with
multiple (N)LFSRs and filtering functions. The GAP package FSR was designed
in such a way that each FSR object corresponds to a VHDL hardware module.
The toolkit directly supports any FSR that can be modelled as shown in Table 2.
A more detailed classification can be seen in Table 4. FSRs with less conventional
feedback functions can be modelled using the FSR package by splitting the
feedback function into a filter and a feedback which allows direct use of (N)LFSR
objects and then connecting the filter using the external connection to the FSR.

The recommended strategy for capturing top-level modules is a combination
of a top-down and bottom-up approach. Before the implementation, whether
in software or in hardware, the mathematical design can be transformed for



10 N. Zidaric et al.

the easiest representation as a collection of different FSRs. Usually, the imple-
mentation using the FSR package is straightforward: FSR objects from Table
2, for which the conditions h(y) : Fq → Fq hold for the LFSRs or conditions
f(x0, . . . , xj−1) : Fj

q → Fq, where j = t, n, for the NLFSRs and FILFUNs, are
very common and can be implemented directly. Example 4 shows a top-level
design for which this process is more complicated. The FSR packages can also
be used to create e.g. a 4-bit shift register (no feedback) in VHDL by creating
an LFSR with a feedback x4. The FILFUN objects can be used for arbitrary
Boolean functions. The designs steps for implementation of the top-level module:

1. Represent the cryptographic module as a collection of different FSRs.
2. Identify possible modes of operation. For each mode and all FSRs define:

– Number of steps performed
– FSR input and possible external input

3. Capture desired behaviour in GAP using methods LoadFSR, StepFSR and
LoadStepFSR or using the manager function call.

Step 2 is very important: it ensures a successful transition to VHDL and
a clean finite state machine (FSM), parametrized with appropriate number of
steps (clock cycles) and issuing correct control signals for the use of the external
FSR inputs. Table 5 shows the modes of operation for WG-7 cipher. All the
steps performed in each mode should be exactly the same; discrepancies mean
that a mode exists but was not captured and the design step 3 must be repeated.

f (x)d

NLFSR

(a) original n-stage NLFSR

f (x)d

LFSR

FILFUN

(b) n-stage LFSR with a filter

Fig. 3: Schematic of an NLFSR represented as an LFSR with a filter FILFUN

Example 4. Figure 3(a) represents the original schematic of an NLFSR from
[15], generating a span-n sequence: the shift register itself is defined over F2, the
t stages provide the coefficients for an element x ∈ F2t , which is the input to the
function fd : F2t → F2. The FSR package (N)LFSR objects can have up to n
output taps: in case of t + 1 output tap positions, the method StepFSR returns
the contents of t + 1 stages, specified1 by (d0, . . . , dt). Thus, the NLFSR from
Figure 3(a) can be implemented as an LFSR (shaded grey in Figure 3(b)) with a
FILFUN implementing function fd. The LFSR is defined over F2 with feedback
xn + 1 and k + 1 tap positions. It uses an external signal from the FILFUN for
external step and run.

1 output taps in Table 2



Rapid hardware design for cryptographic modules with filtering structure 11

3.4 The FSRtoVHDL Package

The FSRtoVHDL package takes an FSR object, or a collection of FSRs objects
and a template specifying their relationship, as an input and generates the VHDL
code for its hardware implementation. The capabilities of the FSRtoVHDL pack-
age are captured in Figure 2(b), however, the functions for generating FSMs and
top-level modules are not fully implemented at this time.

Two VHDL packages are used to define the finite fields used in the design
(field pkg.vhd) and signals used by the FSRs (fsr pkg.vhd): they contain all
of the fields and FSRs used in the design. The finite fields and the FSRs are enu-
merated, which increases the readability of the generated code. The parameters
defined in the field pkg.vhd are used for basic building blocks, such as multi-
pliers. The basic building blocks are implemented using naive methods2 and for
polynomial bases only. The VHDL modules that only need to be parametrized
by the degree of F /K are predefined, however, the blocks depending the field
defining polynomial f are generated on the fly once f is known. Examples of the
latter are reduction matrices and matrix-vector multipliers for multiplication by
constants. FSRtoVHDL includes methods that generate corresponding matrices
prior to generating their VHDL modules.

The FSRs are classified into 6 cases based of their type, underlying finite
field, number of variables t and kind of nonzero coefficients. Conditions, cases
implementation status and implementation comments are listed in Table 4. Each
case has its own rules for generating the FSR architecture. A special case exists
for the FILFUN filters: they can have one single input, i.e., use a univariate fil-
tering function. For the small fields it is feasible to attempt a look-up table style
implementation, called const array3. The filtering function is evaluated for all
field elements and stored as a constant VHDL array. The value the variable takes
behaves as an address to this array.

Table 4: FSRtoVHDL classification for FSR modules

conditions FSRtoVHDL

FSR # vars underlying ∀i : ci case implementation comments

type t finite field belongs to status

LFSR NA

F2 F2 1 fully

F2m
F2

F2m 2 fully MV† for constants

t > 0 F2 F2 3 fully

NLFSR
t > 1 F2m

F2 4 partially

or F2m 5 partially MV† for constants

FILFUN
t = 1 F2m

F2 6 fully
const array

F2m architecture

NA - not applicable † - matrix vector multiplier

2 which have a good performance for small fields
3 to differentiate it from the FPGA LUTs



12 N. Zidaric et al.

4 Case Studies and ASIC Implementation Results

4.1 Case Study 1: The datapath for WG Keystream Generators

WG-7 and WG-8 are members of the Welch-Gong (WG) family of bit-oriented
stream ciphers. WG ciphers generate a keystream with proven randomness and
cryptographic properties. They are composed of an LFSR over an extension field
and a filter function. The LFSR outputs an m-sequence, which is then filtered
with the WG transformation over the same extension field.

Let m be an integer that is not a multiple of 3. The decimated4 WG trans-
formation from F2m to F2 consists of a WG permutation (eq. (7)) and WG
transformation (eq. (8)) of X ∈ F2m :

WGP-m(Xd) = q(Xd + 1) + 1 (7)

WGT-m(Xd) = Tr(WGP(Xd)) (8)

The polynomial q(x) = x + xr1 + xr2 + xr3 + xr4 is a permutation polynomial
from F2m to F2m . Further details are omitted for brevity. Example 5 shows the
WG-7 GAP code using equation (7).

Example 5: beginning of the WG-7 template
################# WG7 params #################

f := x^7+x+Z(2)^0;; F := FieldExtension(K, f);; ChooseField(F);

l := y^23+y^12+y^11+y^8+y^7+y^6+y^5+y^4+y^3+y^2+y+Z(2^7);;

exponents := [ 1, 33, 41, -23, 39 ];; d := 63;; # trace = x_0

################# WG7 FSRs #################

lfsr := LFSR(F, l, [Degree(l)-1]);

dwgpfun := One(F);

for j in [1..Length(exponents)] do

r := exponents[j];

if r<0 then r := r mod (Size(F)-1); fi;

dwgpfun := dwgpfun + (x_0^d + One(F))^r;

od;

dwgpfil := FILFUN(F, dwgpfun);

Table 5 shows a filled out spreadsheet provided by the manager: the entries
×, [0], load, init, run and always are filled in by the designer. Values load, init,
run are possible modes of operation (used by FSM), and value always indicates
an unconditional connection. The entry “[0] run” corresponds to the trace of an
element of F27 represented in polynomial basis using field defining polynomial
x7 + x + 1, that is the WG transformation (equation (8))5.

ASIC implementation results for the WG-7 and WG-8 datapaths, created
by FSRtoVHDL package, are listed in Table 6, and the FPGA implementation
results for WG-8 in Table 7. The FSRtoVHDL generated WG-7dp exhibits a
slightly smaller area and comparable clock frequency, expect for the highest
frequency circuit. All three WG-8 FSRtoVHDL circuits reached a significantly

4 decimation exponent d > 1 and gcd(d, 2m − 1) = 1
5 F28 with defining polynomial x8 + x4 + x3 + x2 + 1: trace is bit 5, i.e. “[5] run”



Rapid hardware design for cryptographic modules with filtering structure 13

higher frequency, with a 2.5× speedup for the best optimality; they are expected
to outperform the WG-8 [17] implementation after the FSM is added. The FS-
RtoVHDL FPGA implementation, however, reached only 65% of the frequency
reached by the manual WG-8 [17] implementation.

Table 5: WG-7 spreadsheet example

i data 1 fsr 1 o fsr fsr 2 o fsr relationship to GAP code

o data 1 × × [0] run in Example 5 above:

fsr 1 i fsr load × × FSR object VHDL module

fsr 1 i ext × × init lfsr fsr 1

fsr 2 i fsr × always × dwgpfil fsr 2

fsr 2 i ext × × ×

Table 6: ASIC implementation results for WG-7 and WG-8 datapaths

design Speed Area Speed Area synthesis tools

used [GHz] [GE] [GHz] [GE] optimization goal

FSRtoVHDL Manual design

WG-7dp 1.00 1320 0.91 1300 smallest area

WG-7dp 1.43 1430 1.43 1740 best optimality

WG-7dp 1.67 2260 2.00 2330 highest frequency

FSRtoVHDL WG-8 † [17]
WG-8dp 0.83 1640 smallest area

WG-8dp 1.25 1860 0.5 1786 best optimality‡
WG-8dp 1.67 2950 highest frequency

† including FSM ‡ unknown synth. tools goal for †

Table 7: FPGA implementation results for WG-8 datapath

design Speed Area Speed Area FPGA device

used [MHz] [# slices] [MHz] [# slices] used

FSRtoVHDL WG-8 † [17]
WG-8dp 124 74 190 137 xc3s1000-5fg320

† including FSM

4.2 Case Study 2: Grain v1

Grain v1 [18,19] is one of the three Profile 2 ciphers6 included in the eSTREAM
portfolio. The structure of Grain v1 is shown Figure 4: it includes an 80-bit

6 stream ciphers for hardware applications with highly restricted resources



14 N. Zidaric et al.

LFSR (with f(x)), an 80-bit NLFSR (with g(x)) and a filtering function h(x),
which takes the input bits from both FSRs. Result of this function is masked by
a bit from the NLFSR to produce the keystream bit.

(a) Run mode (b) Initialization mode

Fig. 4: Original schematic of Grain cipher [18]

The two modes of operation from Figure 4 are combined into a single schematic
in Figure 5: the two original shift registers are presented as FSR package blocks
with output taps and utilizing external step. The filled out spreadsheet to define
the datapath for Grain is shown in Table 8; this table provides the information
that the manager needs to execute Grain and generate the VHDL for Grain
datapath (Figure 5). In the future, the toolkit will also be able to generate the
control circuitry and top-level module for ciphers.

i_ext

o_fsr:
NLFSR

f(x)

i_fsr
o_fsr:

LFSR

clk load init

,0 3 25 46 64, ,, ,, ,,

g(x)

0 63,

i_ext
i_fsr

o_fsr:
NLFSR

g(x)

0 63,

i_ext
i_fsr

o_fsr:
NLFSR

clk load

1 2 3 4,, ,, ,,010

i_
fs

r

i_ext

f(x)=x

i_ext

i_
fs

r

FILFUN 2

i_data_2

o_data_1

11 1
4

5

1

1

55

h(x) FILFUN 1

init fsr1

fsr3

fsr4

i_data_1

fsr2

Fig. 5: Unified schematic of Grain v1 using FSR

The NLFSR (fsr 2 in Figure 5 and Table 8) is using the external input dur-
ing both initialization and running mode, hence an extra multiplexer is needed



Rapid hardware design for cryptographic modules with filtering structure 15

(row fsr 2 i ext in Table 8). The filtering function h(x), now represented as
FILFUN1, takes bits 1,2,3,4 from fsr 1 and bit 1 from fsr 2: this is encoded
with two rules7 in row fsr 3 i fsr in Table 8. The masking bit from the NLFSR
is used as external input for the filtering function h(x), now represented as FIL-
FUN1 (fsr 3 in Table 8). The extra XOR gate, used for the NLFSR external
input during initialization is represented as FILFUN2 identity function and an
external input. While it may seem excessive to represent a simple XOR with a
FILFUN, this aids the transition to VHDL.

Table 8: Grain spreadsheet example

i data 1 i data 2 fsr 1 o fsr fsr 2 o fsr fsr 3 o fsr fsr 4 o fsr

o data 1 × × × × × run

fsr 1 i fsr load × × × × ×
fsr 1 i ext × × × × init ×
fsr 2 i fsr × load × × × ×
fsr 2 i ext × × [0] run × × init

fsr 3 i fsr × × [1, 2, 3, 4,−1] [−1,−1,−1,−1, 1] × ×
fsr 3 i ext × × × [0] × ×
fsr 4 i fsr × × × × always ×
fsr 4 i ext × × [0] × × ×

Tables 9 and 10 show the ASIC and FPGA implementation results for the
Grain datapath. The ASIC implementations are compared to a manual design of
Grain datapath and of Grain cipher used in [17], which is to the best of authors
knowledge the only post place-and-route CMOS65nm implementation of Grain.
The same circuit is presented in both the best optimality and highest frequency
column for the manual design of grain datapath. The FSRtoVHDL datapath
implementation results are very satisfactory in comparison with the smallest area
and best optimality manual circuits. The [17] reference implementation includes
the FSM, which makes a direct comparison difficult. However, the smallest area
FSRtoVHDL datapath is expected to reach the hardware cost of Grain from [17]
after the FSM is added.

The FPGA Grain dp results are compared with Grain cipher implementa-
tion results from [20], which includes the FSM. The generated datapath area is
approximately 65% of the area for the full cipher. The speedup reached by the
FSRtoVHDL datapath design is probably not representative: a drop in frequency
is common after an FSM is added.

Overall, the FSRtoVHDL generated hardware is comparable to the manual
designs and gives a good starting point for further manual optimizations.

7 meaning of -1: this bit is defined in the other rule



16 N. Zidaric et al.

Table 9: ASIC implementation results for Grain datapath

design Speed Area Speed Area synthesis tools

used [GHz] [GE] [GHz] [GE] optimization goal

FSRtoVHDL Manual design

Grain dp 1.11 977 1.00 1020 smallest area

Grain dp 1.67 1080 1.67 1110 best optimality

Grain dp 2.00 1610 1.67 1110 highest frequency

Grain† [17]
Grain - - 1.02 1126 unknown

† including FSM

Table 10: FPGA implementation results for Grain datapath

design Speed Area Speed Area FPGA device

used [MHz] [# slices] [MHz] [# slices] used

FSRtoVHDL Grain† [20]
Grain dp 228 28 196 44 xc3s50-5pq208

† including FSM

5 Conclusion

This work presents an automation toolkit for the rapid hardware design of cryp-
tographic modules with filtering structures, composed of feedback shift regis-
ters and filtering functions. The toolkit consists of two packages FSR and FSR-
toVHDL, written in the GAP language. A great advantage of the FSR package
is the generality of the FSR objects that can be modelled, and as such, they can
be used directly as building blocks of many cryptographic modules. The FSR
package is the core of the toolkit for generation of hardware modules. Because
the FSRs can be executed, the toolkit is also able to generate of test vectors for
the (hardware) simulations.

The toolkit is based on exploitation of structural similarities between LFSRs,
NLFSRs and filters, from both a mathematical and a hardware perspective. For
each FSR object a corresponding hardware module can be generated, and the
FSR objects themselves contain all the information needed for their execution
and hardware implementation. The FSR package can be used to implement ar-
bitrary primitives in GAP, which can operate e.g. as random number generators.

The optimization of the generated hardware is left to the synthesis tools.
The results of the synthesis tools, e.g. critical path analysis, can be used to
further optimize the generated hardware, or even change a part of the design
entirely. Two case studies were used to show that the toolkit generated datapaths
comparable with manual designs. Overall it provides a good estimate of the



Rapid hardware design for cryptographic modules with filtering structure 17

hardware cost for a cryptographic primitive and gives a good starting point for
further manual hardware optimizations.

References

1. Robshaw, M.:“The eSTREAM Project”, New Stream Cipher Designs - The eS-
TREAM Finalists, Springer-Verlag, Berlin Heidelberg, 2008

2. Wu, H.: “ACORN: A Lightweight Authenticated Cipher (v1)”,
3. https://competitions.cr.yp.to/caesar.html
4. ETSI/SAGE Specification version 1.1: “Specification of the 3GPP Confidentiality

and Integrity Algorithms UEA2 & UIA2. Document 2: SNOW 3G Specification”,
Sept. 2006

5. ETSI/SAGE Specification version 1.6: “Specification of the 3GPP Confidentiality
and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification”,
June 2011

6. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.8 ;
2017, (https://www.gap-system.org).

7. https://www.mathworks.com/
8. http://www.sagemath.org/
9. http://doc.sagemath.org/html/en/reference/cryptography/index.html
10. http://library.wolfram.com/infocenter/MathSource/5717/
11. Lidl, R., Niederreiter, H.: Finite fields, Encyclopedia of Mathematics and its Ap-

plications, Vol.20, Cambridge University Press, 1997
12. Golomb, S.W., Gong, G.: Signal Design for Good Correlation: For Wireless Com-

munication, Cryptography, and Radar, Cambridge University Press, 2005
13. Chen, L., Gong, G.: Communication System Security , CRC Press, 2012
14. Coussy,P., Gajski, D.D., Meredith,M., Takach, A.: “An Introduction to High-Level

Synthesis”, IEEE Design & Test of Computers, Volume: 26, Issue: 4, July-Aug. 2009,
pp. 8 - 17, August 2009

15. Mandal, K., Gong, G.: (2014) Generating Good Span n Sequences Using Orthog-
onal Functions in Nonlinear Feedback Shift Registers. In: KoĂ§ Ă‡. (eds) Open
Problems in Mathematics and Computational Science. Springer, Cham

16. G. Gong, M. Aagaard, and X. Fan,“Resilience to distinguishing attacks on WG-7
cipher and their generalizations”, Cryptogr. Commun., vol. 5, no.4, pp. 277-289,
Dec. 2013.

17. G. Yang, X. Fan, M. Aagaard and G. Gong,“Design Space Exploration of the
Lightweight Stream Cipher WG-8 for FPGAs and ASICs”, The 8th Workshop on
Embedded Systems Security (WESS’13), ACM Press, Article No. 8, September 29,
2013,

18. M. Hell, T. Johansson, W. Meier, “Grain - A Stream Cipher for Constrained En-
vironments”,

19. M. Hell, T. Johansson, A. Maximov, and W. Meier, “The Grain Family of Stream
Ciphers”,, New Stream Cipher Designs - the eSTREAM finalists, Springer-Verlag,
Berlin Heidelberg, 2008

20. D. Hwang, M. Chaney, S. Karanam, N. Ton, and K. Gaj. “Comparison of fpga-
targeted hardware implementations of estream stream cipher candidates”, The State
of the Art of Stream Ciphers, pages 151-162, 2008.


